K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TN
0
DT
0
LN
4
22 tháng 7 2020
Bài làm:
Ta có: \(A=x^3+y^3+xy+1=\left(x+y\right)\left(x^2-xy+y^2\right)+xy+1\)
\(=x^2-xy+y^2+xy+1=x^2+y^2+1\)
\(\ge\frac{\left(x+y\right)^2}{2}+1=\frac{1^2}{2}+1=\frac{3}{2}\)(BĐT Cauchy)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
21 tháng 7 2020
Bạn xem lại đề bài, theo mình đề là: Tìm GTNN của A=x3+y3+xy
NT
1
KN
29 tháng 7 2020
Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)
Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)
\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)
Đẳng thức xảy ra khi x = y = z = 1
=> [x^2013+y^2013]^2 = 4.x^2012.y^2012
[x^2013+y^2013]^2 \(\ge\)4.x^2013.y^2013= >4.x^2012.y^2012\(\ge\)4.x^2013.y^2013 => 1 \(\ge\) xy => 1-xy \(\ge\) 0
Dấu bằng xảy ra khi x=y= 1
Vậy min 1-xy = 0 khi x=y=1