Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4a^2-5ab+b^2=0\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow4a-b=0\Rightarrow b=4a\)
\(\Rightarrow P=\frac{a.4a}{4a^2-\left(4a\right)^2}=\frac{4}{4-16}=-\frac{1}{3}\)
Có: 2a2 + 2b2 = 5ab => 2(a2 + b2) = 5ab => a2 + b2 = \(\frac{5}{2}\)ab
\(A=\frac{2b}{a-b}+1=\frac{2b+a-b}{a-b}=\frac{a+b}{a-b}=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{\frac{5}{2}ab+2ab}{\frac{5}{2}ab-2ab}=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=9\)
Vậy A = 9
bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!
vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
áp dụng tc dãy tỉ số = nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
=> a=b=c
thay b=a ; c=a
=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)
đến đây tự làm típ!