Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(L=\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
Áp dụng bất đẳng thức AM-GM:
\(\dfrac{a^3}{a^2+ab+b^2}\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}\)
Chứng minh tương tự: \(\left\{{}\begin{matrix}\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}\\\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\end{matrix}\right.\)
Cộng theo vế: \(L\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Tiếp tục áp dụng AM-GM:
\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
Chứng minh tương tự: \(\left\{{}\begin{matrix}\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\\\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\end{matrix}\right.\)
Cộng theo vế:
\(L\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\ge\dfrac{2}{3}\left(a+b+c-\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{3}\)
Lời giải ở đây: https://hoc24.vn/hoi-dap/question/486195.html
Có: \(\dfrac{a+1}{1+b^2}=\dfrac{\left(1+b^2\right).\left(a+1\right)-b^2\left(a+1\right)}{1+b^2}=a+1-\dfrac{b^2\left(a+1\right)}{1+b^2}\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương 1 và b2 ta được
\(1+b^2\ge2b\Rightarrow-\dfrac{b^2\left(a+1\right)}{1+b^2}\ge-\dfrac{b^2\left(a+1\right)}{2b}=-\dfrac{ab+b}{2}\)
\(\Rightarrow\dfrac{a+1}{1+b^2}\ge a+1-\dfrac{ab+b}{2}\)
CMTT\(\Rightarrow\dfrac{b+1}{1+c^2}\ge b+1-\dfrac{bc+c}{2};\dfrac{c+1}{1+a^2}\ge c+1-\dfrac{ac+a}{2}\)
\(\Rightarrow A\ge\left(a+b+c\right)+3-\dfrac{\left(ab+bc+ac\right)+\left(a+b+c\right)}{2}\)
Ta có \(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow ab+ac+bc\le\dfrac{1}{3}.3^2=3\)
\(\Rightarrow A\ge3+3-\dfrac{3+3}{2}=3\)(đpcm)
Chả biết đúng hay sai,làm đại.:v
Dự đoán dấu "=" xảy ra tại a = b = c = 1
Với dự đoán đó,
Xét \(\dfrac{a+1}{1+b^2}=2-\dfrac{a+1}{1+b^2}\ge2-\dfrac{a+1}{2b}\)
Tương tự: \(\dfrac{b+1}{1+c^2}\ge2-\dfrac{b+1}{2c};\dfrac{c+1}{1+a^2}\ge2-\dfrac{c+1}{2a}\)
Cộng theo vế 3BĐT,ta có: \(VT\ge2+2+2-\dfrac{a+1}{2b}+\dfrac{b+1}{2c}+\dfrac{c+1}{2a}\)
\(=6-\dfrac{a+1}{2b}+\dfrac{b+1}{2c}+\dfrac{c+1}{2a}\)
\(\ge6-\dfrac{2b}{2b}+\dfrac{2c}{2c}+\dfrac{2a}{2a}=3^{\left(đpcm\right)}\) (do dự đoán a = b = c = 1 nên \(a+1\le2b\))
Vậy điều ta dự đoán là đúng.
Dấu "=" xảy ra khi a=b=c=1
Vế trái bậc 0, vế phải bậc 1, không đồng bậc với nhau . BĐT sai ngay với \(a=9,b=3,c=6\)
Sửa: \(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\geq \frac{3(a^2+b^2+c^2)}{ab+bc+ac}\)
Chứng minh:
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^4}{a^2bc}+\frac{b^4}{b^2ac}+\frac{c^4}{c^2ab}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{a^2bc+b^2ac+c^2ab}=\frac{(a^2+b^2+c^2)^2}{abc(a+b+c)}(1)\)
Ta có kết quả quen thuộc của BĐT Cauchy là:
\(a^2+b^2+c^2\geq ab+bc+ac\)
Và: \((ab+bc+ac)^2\geq 3abc(a+b+c)\)
Do đó: \(a^2+b^2+c^2\geq ab+bc+ac\geq \frac{3abc(a+b+c)}{ab+bc+ac}(2)\)
Từ \((1);(2)\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2).3abc(a+b+c)}{(ab+bc+ac)abc(a+b+c)}=\frac{3(a^2+b^2+c^2)}{ab+bc+ac}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Lời giải:
Ta có:
\(\text{VT}=a-\frac{ab(a+b)}{a^2+ab+b^2}+b-\frac{bc(b+c)}{b^2+bc+c^2}+c-\frac{ca(c+a)}{c^2+ca+a^2}\)
\(=a+b+c-\left(\frac{ab(a+b)}{a^2+ab+b^2}+\frac{bc(b+c)}{b^2+bc+c^2}+\frac{ca(c+a)}{c^2+ca+a^2}\right)\)
Áp dụng BĐT AM-GM:
\(\text{VT}\geq a+b+c-\left(\frac{ab(a+b)}{2ab+ab}+\frac{bc(b+c)}{2bc+bc}+\frac{ca(c+a)}{2ac+ac}\right)\)
\(\Leftrightarrow \text{VT}\geq a+b+c-\frac{2}{3}(a+b+c)=\frac{a+b+c}{3}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
Chứng minh rằng \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)
\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)
\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)
\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{matrix}\right.\)
\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\) ( đpcm )
Vì \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)
Mà \(\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)( đpcm )
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(\sum\frac{a^2}{a+\sqrt[3]{bc}}\geq\sum\frac{a^2}{a+\frac{b+c+1}{3}}=\sum\frac{9a^2}{3(3a+b+c)+a+b+c}\)
\(=\sum\frac{9a^2}{10a+4b+4c}\geq\frac{9(a+b+c)^2}{(10a+4b+4c)}=\frac{9(a+b+c)^2}{18(a+b+c)}=\frac{3}{2}\)
\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)
\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)
\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)
Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*