Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=k\Leftrightarrow a=bk;b=ck\Leftrightarrow a=ck^2\\ \Leftrightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{c^2k}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{a+b+c+d}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\\ \Rightarrow VT=\left(\dfrac{2019a+2020a-2021a}{2019a+2020a-2021a}\right)^3=1^3=1=\dfrac{a^2}{a\cdot a}=VP\)
Sửa đề: \(\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2020a}{2020b}=\dfrac{2020c}{2020d}=\dfrac{2019a}{2019c}=\dfrac{2019b}{2019d}=\dfrac{2018a}{2018c}=\dfrac{2018b}{2018d}=\dfrac{2018a-2019b}{2018c-2019d}=\dfrac{2019a+2020b}{2019c+2020d}\\ \Leftrightarrow\dfrac{2018a-2019b}{2019a+2020b}=\dfrac{2018c-2019d}{2019c+2020d}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)
\(\Leftrightarrow\dfrac{2020a^2}{2020c^2}=\dfrac{2021b^2}{2021d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2020a^2}{2020c^2}=\dfrac{2021b^2}{2021d^2}=\dfrac{2020a^2+2021b^2}{2020c^2+2021d^2}=\dfrac{2020a^2-2021b^2}{2020c^2-2021d^2}\)
Ta có: \(\dfrac{2020a^2+2021b^2}{2020c^2+2021d^2}=\dfrac{2020a^2-2021b^2}{2020c^2-2021d^2}\)(cmt)
nên \(\dfrac{2020a^2+2021b^2}{2020a^2-2021b^2}=\dfrac{2020c^2+2021d^2}{2020c^2-2021d^2}\)(đpcm)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)
\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)
\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)
Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)
Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) chứng minh \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{a}{b}\right)^3=\dfrac{a^3}{b^3}\left(1\right)\)
mà cần chứng minh: \(\left(\dfrac{a+b+c}{b+c+d}\right)=\dfrac{a}{d}\left(2\right)\)
từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(\dfrac{a^3}{b^3}=\dfrac{a}{d}\Rightarrow a^3.d=b^3.a\)
\(\Rightarrow a^2.d=b^3\)
vì \(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow a.c=b^2\)
\(\Rightarrow a.b.c=b.c\left(3\right)\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow a.d=b.c\left(4\right)\)
từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow a.a.d=b^3\)
\(\Rightarrow a^2.d=b^3\left(đpcm\right)\)
vậy \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
:)
- Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\) (gt)
=>\(ad< bc\)
=>\(ad+ab< bc+ab\)
=>\(a\left(b+d\right)< b\left(a+c\right)\)
=>\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (1)
- Ta có: \(\dfrac{c}{d}>\dfrac{a}{b}\) (gt)
=>\(bc>ad\)
=>\(bc+cd>ad+cd\)
=>\(c\left(b+d\right)>d\left(a+c\right)\)
=>\(\dfrac{c}{d}>\dfrac{a+c}{b+d}\) (2)
- Từ (1) và (2) suy ra: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Bạn à tôi chịu
thì nó khó thiệt mà