K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

1 tháng 11 2018

óc người ak

 Câu trả lời hay nhất:  Theo hằng đẳng thức 
a^2+b^2=(a+b)^2-2ab; 
c^2+d^2=(c+d)^2-2cd. 
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ; 
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với 
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn, 
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì 
a+b+c+d>=4 nên a+b+c+d là hợp số.

23 tháng 3 2018

Ta có: A=3(a+c)(b+d)  <=> 2A/3 = 2(a+c)(b+d)

Theo Cauchy => 2A/3 \(\le\)(a+c)2+(b+d)2

Mặt khác, theo BĐT Bunhiacopxki có: 

\(\left(a+c\right)^2=\left(1.a+\frac{1}{\sqrt{2}}.\sqrt{2}c\right)^2\le\left(1+\frac{1}{2}\right)\left(a^2+2c^2\right)=\frac{3}{2}\left(a^2+2c^2\right)\)

Tương tự: \(\left(b+d\right)^2=\left(1.b+\frac{1}{\sqrt{2}}.\sqrt{2}d\right)^2\le\left(1+\frac{1}{2}\right)\left(b^2+2d^2\right)=\frac{3}{2}\left(b^2+2d^2\right)\)

=> \(\frac{2A}{3}\le\frac{3}{2}\left(a^2+b^2+2c^2+2d^2\right)=\frac{3}{2}.1=\frac{3}{2}\)

=> \(A\le\frac{9}{4}=>A_{max}=\frac{9}{4}\)

14 tháng 10 2017

Với a,b,c ko âm

a^2 = b^2 + c^2 (1) 
=> a^2 = (b+c)^2 - 2bc 
=> a^2 <= (b+c)^2 
=> a <= b+c (2) 

Nhân (1) với (2), vế theo vế ta có: 
a^3 = b^3 + c^3 + bc(b+c) 
=> a^3 >= b^3 + c^3

14 tháng 10 2017

ok bạn thanks nha

4 tháng 8 2015

  a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)