Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2=\left(a+b\right)^2+\left(\frac{1+ab}{a+b}\right)^2-2ab\ge2\left(1+ab\right)-2ab=2\)
Vì \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{cases}}\)
\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)
\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow VT\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)
Do \(a+b+c\ge2\Rightarrow a+b+c-1\ge1\Rightarrow VT\ge2\)
Đẳng thức xảy ra khi 1 trong 3 số a,b,c có 2 số bằng 1 và 1 số bằng 0
bạn thử giải hộ mình mấy bài này vs
https://diendantoanhoc.net/topic/173087-to%C3%A1n-%C3%B4n-thi-v%C3%A0o-l%E1%BB%9Bp-10/#entry681162
\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}}\)
\(=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca=1\left(1\right)\)
Áp dụng BĐT Cô-si ta có:
\(a+b\ge2\sqrt{ab}\)
Tương tự:\(b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(2\right)\)
Từ (1) và (2) suy ra:
\(P\ge1+\frac{8abc}{8abc}=2\left(đpcm\right)\)
Dấu '=' xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
:))
ở phần cô si phần cuối là bn sai r
vì >= nhưng ở dưới mẫu nên bị đảo lại thành =< nên bn lm như thế k đúng
đay là link giải https://diendan.hocmai.vn/threads/bdt-a-2-b-2-c-2-dfrac-8abc-a-b-b-c-c-a-geq-2.341255/
\(A=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{\left(ab\right)^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{\left(ab\right)^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{ab}\)
\(=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{1^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{1^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{1}\)
\(=\frac{a^2-ab+b^2}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)\(=\frac{\left(a^3+b^3\right)\left(a+b\right)+3a^2+3b^2+6}{\left(a+b\right)^4}\)
\(=\frac{a^4+a^3b+ab^3+b^4+3a^2+3b^2+6}{a^4+4a^3b+6a^2b^2+4ab^3+b^4}\)\(=\frac{a^4+a^2.1+1.b^2+b^4+3a^2+3b^2+6}{a^4+4a^2.1+6.1^2+4b^2.1+b^4}\)
\(=\frac{a^4+4a^2+4b^2+b^4+6}{a^4+4a^2+6+4b^2+b^4}=1\)
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Tương tự ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Vậy ta cần chứng minh:
\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.
Không mất tính tổng quát, giả sử \(a\ge b\).
Đặt \(a+b=2x;a-b=2y\) thì \(x,y\ge0\) và \(a=x+y;b=x-y\) (1)
Theo đề bài: \(2x+2=4y^2\Rightarrow x=2y^2-1\ge0\)(*). Thay vào (1) thu được: \(a=2y^2+y-1;b=2y^2-y-1\)
Vì \(b\ge0\Rightarrow2y^2-y-1\ge0\) (do trên) (**)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)\ge0\Leftrightarrow y\ge1\)
Vậy ta cần chứng minh:\(\left[1+\frac{\left(2y^2+y-1\right)^3}{\left(2y^2-y\right)^3}\right]\left[1+\frac{\left(2y^2-y-1\right)^3}{\left(2y^2+y\right)^3}\right]\le9\)
\(\Leftrightarrow\frac{\left(1-y\right)\left(y+1\right)\left(5y^4+2y^2-1\right)}{y^6}\le0\)
\(\Leftrightarrow\left(1-y\right)\left(5y^4+2y^2-1\right)\le0\)
\(\Leftrightarrow\left(1-y\right)\left[\frac{1}{4}\left(2y^2-1\right)\left(10y^2+9\right)+\frac{5}{4}\right]\le0\)
Cái ngoặc vuông > 0 (do (*) ). Nên ta chỉ cần chứng minh: \(1-y\le0\Leftrightarrow y\ge1\)(hiển nhiên đúng theo (**) )
Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(2;0\right),\left(0;2\right)\right\}\)