Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.
=> Có 2 trường hợp:
TH1: a^2+a=b^2+b và a=b
⇒a=b(đpcm)
TH2: a^2+a=b và a=b^2+b
Trừ theo vế cho nhau, ta được:
a^2+a−a=b−(b^2+b)
⇒a^2+a−a=b−b^2−b
⇒a^2=−b^2
⇒a^2+b^2=0
\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\Rightarrow a=b=0\)
Vậy a=b
Chúc bạn học tốt!
Vì { a2 + a ; a } và { b2 + b ; b } bằng nhau nên ta có các trường hợp sau :
TH1 : a = b \( \implies\) a2 +a = b2 + b ( Luôn đúng )
TH2 : a2 + a = b và b2 + b = a
\( \implies\) a2 + a + b2 + b = a + b
\( \implies\) a2 + b2 = 0 ( 1 )
Ta có : a2 \(\geq\) 0 ; b2 \(\geq\) 0 \( \implies\) a2 + b2 \(\geq\) 0 ( 2 )
Từ ( 1 ) ; ( 2 ) Dấu " = " xảy ra \(\iff\) \(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}}\) \(\iff\) \(\hept{\begin{cases}a=0\\b=0\end{cases}}\) \( \implies\) a = b = 0
KL : a = b
Đơn Giản thôi
Ta có \(\hept{\begin{cases}a^2+a=b\\b^2+b=b\end{cases}}\)Mà \(b=b\)nên \(a^2+a=b^2+b\)
Để \(a^2+a=b^2+b\)thì \(a^2=b^2\)và \(a=b\)(đpcm)
Vậy a=b
Nhật Khôi nè.Tau nghĩ là a2=b2 chưa chắc a=b. Nếu a và là hai số đối nhau thì bình lên cũng bằng nhau mà?
Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.
=> Có 2 trường hợp:
TH1: \(a^2+a=b^2+b\) và \(a=b.\)
\(\Rightarrow a=b\left(đpcm\right).\)
TH2: \(a^2+a=b\) và \(a=b^2+b.\)
Trừ theo vế cho nhau, ta được:
\(a^2+a-a=b-\left(b^2+b\right)\)
\(\Rightarrow a^2+a-a=b-b^2-b\)
\(\Rightarrow a^2=-b^2\)
\(\Rightarrow a^2+b^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=0\\b^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\Rightarrow a=b=0.\)
Vậy \(a=b.\)
Chúc bạn học tốt!
Để 2 tập hợp bằng nhau thì mỗi phần tử của tập hợp này phải bằng mỗi phần tử của tập hợp kia.
=> có 2 khả năng:
+TH1: a^2+a = b^2+b và a = b ---> a=b.
+ TH2: a^2+a = b và a = b^2+b. Lấy 2 biểu thức trên trừ cho nhau vế theo vế, ta được:
a^2+a - a = b - (b^2 + b) <=> a^2 + b^2 = 0 <=> a=b=0.
* Vậy a=b.