K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

mình sửa lại đề chút
\(af-be=1\) nha

6 tháng 6 2020

mn giúp nhưng khó quá  -.-

3 tháng 4 2017

d= d* 1

= d* (af- be)

= daf- dbe

= daf- bcf+ bcf- dbe 

= f (ad- bc)+b (cf- de)

Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1

=> f(ad- be)+ b(cf- de) >= f + b

<=> d >= b+f (đpcm)

22 tháng 3 2017

bó tay . com

26 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)

Ta có:

\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)

27 tháng 10 2017

Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học. vui

AH
Akai Haruma
Giáo viên
25 tháng 11 2020

Lời giải:

Với $a,b,c,d,e,f\in\mathbb{Z}^+$ ta có:

$\frac{a}{b}>\frac{c}{d}\Rightarrow ad>bc\Leftrightarrow ad-bc>0$

Mà $ad,bc$ đều nguyên nên từ đây suy ra $ad-bc\geq 1(*)$

Tương tự:

$\frac{c}{d}>\frac{e}{f}\Rightarrow cf-ed\geq 1(**)$

Từ $(*); (**)$ suy ra:

$d=d(af-be)=daf-dbe=(daf-bcf)+(bcf-dbe)$

$=f(ad-bc)+b(cf-ed)\geq f.1+b.1$

Hay $d\geq b+f$ (đpcm)

25 tháng 11 2020

Em cảm ơn chị !