Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a-b+b-c+c-a=0 nên (a−b)^3+(b−c)^3+(c−a)^3=3(a−b)(b−c)(c−a)
Do đó 3(a−b)(b−c)(c−a)=210⇔(a−b)(b−c)(c−a)=70
mà a;b;cϵZ→a−b;b−c;c−aϵZ
→a−b;b−c;c−a là ước của 70
Mặt khác 70=(−2)(−5)^7 (do tổng 3 số này bằng 0)
Do đó A=2+5+7=14
(a-b)^3=a^3-3a^2b+3ab^2-b^3
(b-c)^3=b^3-3b^2c+3bc^2-c^3
(c-a)^3=c^3-3c^2a+3ca^2-a^3
Cộng ba pt, ta được
-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2
-3(a^2b-ab^2+b^2c-bc^2+c^2a-ca^2)
-3(a^2(b-c)+bc(b-c)-a(b^2-c^2))
-3(b-c)(a^2+bc-a(b+c))
-3(b-c)(a-b)(a-c)=210
(b-c)(a-b)(a-c)=-70
(b-c)(a-b)(a-c)=2*5*(-7)
=>b-c=2, a-b=5, a-c=-7
=>|a-b|+|b-c|+|c-a|=14
(a−b)3=a3−3a2b+3ab2−b3(a−b)3=a3−3a2b+3ab2−b3
(b−c)3=b3−3b2c+3bc2−c3(b−c)3=b3−3b2c+3bc2−c3
(c−a)3=c3−3c2a+3ca2−a3(c−a)3=c3−3c2a+3ca2−a3
=>(a−b)3+(b−c)3+(c−a)3=−3a2b+3ab2−3b2c+3bc2−3c2a+3ca2=210=>(a−b)3+(b−c)3+(c−a)3=−3a2b+3ab2−3b2c+3bc2−3c2a+3ca2=210
<=>−3(a2b−ab2+b2c−bc2+c2a−ca2)=210<=>−3(a2b−ab2+b2c−bc2+c2a−ca2)=210
<=>−3[a2(b−c)+bc(b−c)−a(b2−c2)]=210<=>−3[a2(b−c)+bc(b−c)−a(b2−c2)]=210
<=>−3(b−c)[a2+bc−a(b+c)]=210<=>−3(b−c)[a2+bc−a(b+c)]=210
<=>−3(b−c)(a2+bc−ab−ac)=210<=>−3(b−c)(a2+bc−ab−ac)=210
<=>−3(b−c)[a(a−c)−b(a−c)]=−3(b−c)(a−c)(a−b)=210<=>−3(b−c)[a(a−c)−b(a−c)]=−3(b−c)(a−c)(a−b)=210
<=>3(b−c)(c−a)(a−b)<=>3(b−c)(c−a)(a−b)
<=>(b−c)(a−b)(c−a)=70<=>(b−c)(a−b)(c−a)=70
=>b−c=2,a−b=5,c−a=7=>b−c=2,a−b=5,c−a=7
=>|a−b|+|b−c|+|c−a|=14
a-b)^3=a^3-3a^2b+3ab^2-b^3
(b-c)^3=b^3-3b^2c+3bc^2-c^3
(c-a)^3=c^3-3c^2a+3ca^2-a^3
Cộng ba pt, ta được
-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2
-3(a^2b-ab^2+b^2c-bc^2+c^2a-ca^2)
-3(a^2(b-c)+bc(b-c)-a(b^2-c^2))
-3(b-c)(a^2+bc-a(b+c))
-3(b-c)(a-b)(a-c)=210
(b-c)(a-b)(a-c)=-70
(b-c)(a-b)(a-c)=2*5*(-7)
=>b-c=2, a-b=5, a-c=-7
=>|a-b|+|b-c|+|c-a|=14
a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1
⇒ \(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)
⇒a\(^3\)+ b\(^3\)+ c\(^3\) ≤ \(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1
Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)
Vậy S = 0 + 0 + 1 = 1
a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c
Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)
Từ giả thiết => a = 0 hoặc a = b
* TH1: a = 0
b(b-c)+c(c-a)=0 <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)
Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0
Vậy a = b = c = 0 => A = 5
* TH2: a = b
b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c
Vậy a =b=c => A = a3 + a3 +a3 - 3a3 + 3a2 - 3a + 5
= 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4
Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4
17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2
Câu trả lời hay nhất: (a-b)^3=a^3-3a^2b+3ab^3-b^3
(b-c)^3=b^3-3b^2c+3bc^2-c^3
(c-a)^3=c^3-3c^2a+3ca^2-a^3
Cộng ba pt, ta được
-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2
-3(a^2b-ab^2+b^2c-bc^2+c^2a-ca^2)
-3(a^2(b-c)+bc(b-c)-a(b^2-c^2))
-3(b-c)(a^2+bc-a(b+c))
-3(b-c)(a-b)(a-c)=210
(b-c)(a-b)(a-c)=-70
(b-c)(a-b)(a-c)=2*5*(-7)
=>b-c=2, a-b=5, a-c=-7
=>|a-b|+|b-c|+|c-a|=14