K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

(a−b)3=a3−3a2b+3ab2−b3
(b−c)3=b3−3b2c+3bc2−c3
(c−a)3=c3−3c2a+3ca2−a3
=>(a−b)3+(b−c)3+(c−a)3=−3a2b+3ab2−3b2c+3bc2−3c2a+3ca2=210
<=>−3(a2b−ab2+b2c−bc2+c2a−ca2)=210
<=>−3[a2(b−c)+bc(b−c)−a(b2−c2)]=210
<=>−3(b−c)[a2+bc−a(b+c)]=210
<=>−3(b−c)(a2+bc−ab−ac)=210
<=>−3(b−c)[a(a−c)−b(a−c)]=−3(b−c)(a−c)(a−b)=210
<=>3(b−c)(c−a)(a−b)
<=>(b−c)(a−b)(c−a)=70
=>b−c=2,a−b=5,c−a=7

 

12 tháng 12 2016

a-b)^3=a^3-3a^2b+3ab^2-b^3
(b-c)^3=b^3-3b^2c+3bc^2-c^3
(c-a)^3=c^3-3c^2a+3ca^2-a^3
Cộng ba pt, ta được
-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2
-3(a^2b-ab^2+b^2c-bc^2+c^2a-ca^2)
-3(a^2(b-c)+bc(b-c)-a(b^2-c^2))
-3(b-c)(a^2+bc-a(b+c))
-3(b-c)(a-b)(a-c)=210
(b-c)(a-b)(a-c)=-70
(b-c)(a-b)(a-c)=2*5*(-7)
=>b-c=2, a-b=5, a-c=-7
=>|a-b|+|b-c|+|c-a|=14

15 tháng 8 2015

(a-b)^3=a^3-3a^2b+3ab^2-b^3
(b-c)^3=b^3-3b^2c+3bc^2-c^3
(c-a)^3=c^3-3c^2a+3ca^2-a^3
Cộng ba pt, ta được
-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2
-3(a^2b-ab^2+b^2c-bc^2+c^2a-ca^2)
-3(a^2(b-c)+bc(b-c)-a(b^2-c^2))
-3(b-c)(a^2+bc-a(b+c))
-3(b-c)(a-b)(a-c)=210
(b-c)(a-b)(a-c)=-70
(b-c)(a-b)(a-c)=2*5*(-7)
=>b-c=2, a-b=5, a-c=-7
=>|a-b|+|b-c|+|c-a|=14

15 tháng 8 2015

Huỳnh Ngọc Cẩm Tú copy phải ko ta       

13 tháng 12 2016

Áp dụng BĐT AM-GM ta có:

\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)

\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)

Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)

\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)

NV
4 tháng 10 2021

\(a+b+c=0\) nên trong 3 số a;b;c phải có ít nhất 1 số dương

Do vai trò của 3 biến như nhau, ko mất tính tổng quát, giả sử \(c>0\)

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc=-6\)

\(\Rightarrow F=\dfrac{ab+bc+ca-\left(a^2+b^2+c^2\right)}{-6}=\dfrac{3\left(ab+bc+ca\right)}{-6}=\dfrac{ab+bc+ca}{-2}\)

\(=\dfrac{-\dfrac{2}{c}+c\left(a+b\right)}{-2}=\dfrac{-\dfrac{2}{c}+c\left(-c\right)}{-2}=\dfrac{c^2}{2}+\dfrac{1}{c}=\dfrac{c^2}{2}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2}{8c^2}}=\dfrac{3}{2}\)

\(F_{min}=\dfrac{3}{2}\) khi \(\left(a;b;c\right)=\left(-2;1;1\right)\) và các hoán vị

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

11 tháng 9 2019

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

11 tháng 9 2019

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

13 tháng 12 2016

Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)

\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)

13 tháng 12 2016

a.b.c=1 thật hả. Rắc rối thế. Để nghĩ tiếp