Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y+100=z\Rightarrow x-y-z=-100\)
\(\dfrac{x}{4}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{y}{15}=\dfrac{z}{9}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
\(\Rightarrow x=20.25=500;y=15.25=375;z=9.25=225\)
b/ \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)
\(\Rightarrow\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{5z-25-4y-12-3x+3}{30-16-6}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=2\\\dfrac{y+3}{4}=2\\\dfrac{z-5}{6}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)
c/ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=a\Rightarrow\left\{{}\begin{matrix}x=2a\\y=3a\\z=5a\end{matrix}\right.\) \(\Rightarrow xyz=2a.3a.5a=30a^3=-30\Rightarrow a^3=-1\Rightarrow a=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2a=-2\\y=3a=-3\\z=5a=-5\end{matrix}\right.\)
d/ \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\Rightarrow\dfrac{2x}{2,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2,2-1,3}=\dfrac{5,5}{0,9}=\dfrac{55}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1,1.55}{9}=\dfrac{121}{18}\\y=\dfrac{1,3.55}{9}=\dfrac{143}{18}\\z=\dfrac{1,4.55}{9}=\dfrac{77}{9}\end{matrix}\right.\) Nghi ngờ bạn chép đề câu này sai, số xấu quá
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé:
1/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x-y}{5-6}=\dfrac{36}{-1}=-36\)
\(\Rightarrow\left\{{}\begin{matrix}x=-36\cdot5=-180\\y=-36\cdot6=-216\\z=-36\cdot4=-144\end{matrix}\right.\)
2/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{y+z}{3+4}=\dfrac{28}{7}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=4\cdot3=12\\z=4\cdot4=16\end{matrix}\right.\)
3/
\(\dfrac{x}{1,2}=\dfrac{y}{1,3}\Leftrightarrow\dfrac{2x}{2,4}=\dfrac{y}{1,3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{2,4}=\dfrac{y}{1,3}=\dfrac{2x-y}{2,4-1,3}=\dfrac{5,5}{1,1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5\cdot2,4}{2}=6\\y=5\cdot1,3=6,5\\z=5\cdot1,4=7\end{matrix}\right.\)
4/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{x-y}{0,5-0,3}=\dfrac{1}{0,2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot0,5=2,5\\y=5\cdot0,3=1,5\\z=5\cdot0,2=1\end{matrix}\right.\)
5/
\(z=\dfrac{x}{0,3}\Leftrightarrow z=\dfrac{3x}{0,9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(z=\dfrac{3x}{0,9}=\dfrac{z-3x}{1-0,9}=\dfrac{1}{0,1}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10\cdot0,9}{3}=3\\y=10\cdot0,7=7\\z=10\end{matrix}\right.\)
TH1 : \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
\(\Leftrightarrow M=\dfrac{\left(-z\right)\left(-x\right)\left(-y\right)}{8xyz}=\dfrac{-\left(xyz\right)}{8xyz}=\dfrac{-1}{8}\)
Th2 : \(x+y+z\ne0\)
\(\dfrac{2x+2y-z}{z}=\dfrac{2x-2z+y}{y}=\dfrac{2y+2z-x}{x}\)
\(\Leftrightarrow\left(\dfrac{2x+2y-z}{z}+3\right)=\left(\dfrac{2x-2z+y}{y}+3\right)=\left(\dfrac{2y+2z-x}{x}+3\right)\)
\(\Leftrightarrow\dfrac{2x+2y+2z}{z}=\dfrac{2x+2y+2z}{y}=\dfrac{2x+2y+2z}{x}\)
\(\Leftrightarrow x=y=z\)
\(\Leftrightarrow M=\dfrac{2x.2y.2z}{8xyz}=1\)
Vậy \(\left[{}\begin{matrix}M=\dfrac{-1}{8}\Leftrightarrow x+y+z=0\\M=1\Leftrightarrow x+y+z\ne0\end{matrix}\right.\)
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{1}{3}=\dfrac{x+y}{\left(x+y\right)+2\left(z+t\right)}\)
\(\Rightarrow\left(x+y\right)+2\left(z+t\right)=3\left(x+y\right)\)
\(\Rightarrow2\left(z+t\right)=2\left(x+y\right)\Rightarrow\dfrac{x+y}{z+t}=1\)
Chứng minh tương tự ta được:
\(\dfrac{y+z}{x+t}=1;\dfrac{z+t}{x+y}=1;\dfrac{t+x}{y+z}=1\)
\(\Rightarrow P=1+1+1+1=4\)
+Xét x+y+z+t=0
\(\Rightarrow\)\(\left\{{}\begin{matrix}z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\\x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\end{matrix}\right.\)
Khi đó M=-4
+Xét x+y+z+t\(\ne\)0
ADTC dãy tỉ số bằng nhau ta có
\(\dfrac{x}{y+z+t}\)=\(\dfrac{y}{x+y+t}\)=\(\dfrac{z}{x+y+t}\)=\(\dfrac{z}{x+y+t}\)=\(\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\)=\(\dfrac{1}{3}\)
+Với\(\dfrac{x}{y+z+t}\)=\(\dfrac{1}{3}\)
\(\Rightarrow\)3x=y+z+t
\(\Rightarrow\)4x=x+y+z+t
Chứng minh tương tự ta có
4y=x+y+z+t
4z=x+y+z+t
4t=x+y+z+t
Do đó x=y=z=t
Khi đó M=4
+) Nếu \(x+y+z\ne0\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+z-x}{x}=1\\\dfrac{x+z-y}{y}=1\\\dfrac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z-x=x\\x+z-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\x+z=2y\\x+y=2z\end{matrix}\right.\)
\(\Leftrightarrow B=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)\)
\(\Leftrightarrow B=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=2\)
+) Nếu \(x+y+z\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
\(\Leftrightarrow B=\dfrac{-z}{y}.\dfrac{-x}{z}.\dfrac{-y}{x}=-1\)
Vậy ..
Hằng à,t chưa thấy đứa này ngu như mày
\(\dfrac{2x.2y.2z}{xyz}=2\) thì học hành cái qq j
Ta có: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+t+x}=\dfrac{t}{y+x+z}\)
\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)
\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{y+t+x}=\dfrac{x+y+z+t}{y+x+z}\)+) Xét \(x+y+z+t=0\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\end{matrix}\right.\)
\(\Rightarrow A=-1\)
+) Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)
\(\Rightarrow A=1\)
Vậy A = -1 hoặc A = 1
Ta có:\(\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)
Nếu x+y+z+t\(\ne\)0 thì y+z+t=z+t+x=t+x+y=x+y+z
=>x=y=z=t nên P=1+1+1+1=4
Nếu X+y+z+t=0 thì P=-4
\(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2,2-1,3}=\dfrac{4,5}{0,9}=5\\ \Leftrightarrow\left\{{}\begin{matrix}x=5,5\\y=6,5\\z=7\end{matrix}\right.\)
Ta có :
\(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\) = \(\dfrac{2x}{2,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\) = \(\dfrac{2x-y}{2,2-1,3}\)= \(\dfrac{4,5}{0,9}\)= 5
=> x = 5 . 1,1 = 5,5
y = 5 . 1,3 = 6,5
z = 5. 1,4 = 7
Vậy ...