K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

1,

Giải:

a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\) (1)

\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

b, \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

\(\Rightarrowđpcm\)

25 tháng 7 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\)

\(\Rightarrow\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\)

\(\dfrac{k-1}{k}=\dfrac{k-1}{k}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\rightarrowđpcm\)

29 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a, Ta có: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)\(\Rightarrow\dfrac{\left(bk-b\right)^2}{\left(ck-c\right)^2}=\dfrac{bk.b}{dk.d}\)

\(\Rightarrow\dfrac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\)

Vậy \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)

b, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}\)

\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a+3b}{5c+3d}\)

23 tháng 7 2017

\(\dfrac{a}{b}=\dfrac{7a}{7b}\\ \dfrac{c}{d}=\dfrac{5c}{5d}\Rightarrow\dfrac{a}{b}=\dfrac{7a}{7b}=\dfrac{5c}{5d}\Rightarrow\dfrac{7a}{7b}=\dfrac{5c}{5d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{7a}{7b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\)

\(\dfrac{7a}{7b}=\dfrac{a}{b}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{7a+5c}{7b+5d}\Leftrightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\)

Vậy \(\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\left(đpcm\right)\)

23 tháng 7 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow5ad=5bc\)

\(\Rightarrow7ab+5ad=7ab+5bc\)

\(\Rightarrow a\left(7b+5d\right)=b\left(7a+5c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{7a+5c}{7b+5d}\rightarrowđpcm\)

7 tháng 10 2017

1) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (1)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

2) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)

Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

8 tháng 10 2017

lm cách ap dung tc day ti so = nhau

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{2a+5b}{2c+5d}=\dfrac{2bk+5b}{2dk+5d}=\dfrac{b}{d}\)

\(\dfrac{2a-5b}{2c-5d}=\dfrac{2bk-5b}{2dk-5k}=\dfrac{b}{d}\)

Do đó: \(\dfrac{2a+5b}{2c+5d}=\dfrac{2a-5b}{2c-5d}\)

b: \(\dfrac{a^2-b^2}{a^2+b^2}=\dfrac{b^2k^2-b^2}{b^2k^2+b^2}=\dfrac{k^2-1}{k^2+1}\)

\(\dfrac{c^2-d^2}{c^2+d^2}=\dfrac{d^2k^2-d^2}{d^2k^2+d^2}=\dfrac{k^2-1}{k^2+1}\)

Do đó: \(\dfrac{a^2-b^2}{a^2+b^2}=\dfrac{c^2-d^2}{c^2+d^2}\)

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

b: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

c: \(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{k-1}{k+1}\)

\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{k-1}{k+1}\)

Do đó: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)