Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại link sau:
Câu hỏi của Nguyễn Thiện Minh - Toán lớp 8 | Học trực tuyến
Ta có: \(A=a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)
\(\Rightarrow A=a^3+b^3+c^3-3abc=0\) \(\Rightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
Xét \(M=a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow2M=2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow2M=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow a-b=0;b-c=0;c-a=0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)
Bài 2:
Bài 1:
\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)
1/(a+b) + 1/(b+c) + 1/(c+a) = 4/(a+b+c)
=> [1/(a+b) + 1/(b+c) + 1/(c+a)](a+b+c) = 4
=> 3 + c/(a+b) +a/(b+c) + b/(c+a) = 4
=> [3 + c/(a+b) + a/(b+c) + b/(c+a)](a+b+c) = 4(a+b+c)
=> 3(a+b+c) + c + c2(a+b) + a + a2(b+c) + b + b2(c+a) = 4(a+b+c)
=> a2(b+c) + b2(c+a) + c2(a+b) = 0
Ko cần cảm ơn, mik giúp bạn chỉ vì mik đang sắp rơi vào danh sách học sinh dốt của hoc24h ^^
Ta có:
\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\frac{0-2010}{2}=-1005\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\)
\(=\left(-1005\right)^2-2abc.0=1005^2\)
\(\Rightarrow A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=2010^2-1005^2=2.1005^2=2020050\)
Lời giải:
ĐKĐB tương đương với \(\left\{\begin{matrix} a^4=12c-2015\\ b^4=12a-2015\\ c^4=12b-2015\end{matrix}\right.(*)\)
\(\Rightarrow \left\{\begin{matrix} a^4-b^4=12(c-a)\\ b^4-c^4=12(a-b)\\ c^4-a^4=12(b-c)\end{matrix}\right.\)
Nhân theo vế:
\((a^4-b^4)(b^4-c^4)(c^4-a^4)=12^3(a-b)(b-c)(c-a)\)
\(\Leftrightarrow (a-b)(a+b)(a^2+b^2)(b-c)(b+c)(b^2+c^2)(c-a)(c+a)(c^2+a^2)=12^3(a-b)(b-c)(c-a)\)
\(\Leftrightarrow (a-b)(b-c)(c-a)[\prod (a+b)\prod (a^2+b^2)-12^3]=0\)
TH1 :Nếu $a=b$ \(\Rightarrow 12(c-a)=a^4-b^4=0\Rightarrow c=a\)
\(\Rightarrow a=b=c\)
Khi đó:
\(P=\frac{670a+b+c}{a}+\frac{670b+c+a}{b}+\frac{670c+a+b}{c}=\frac{670a+a+a}{a}+\frac{670a+a+a}{a}+\frac{670a+a+a}{a}\)
\(=672+672+672=2016\)
Tương tự $b=c,c=a$ ta cũng thu được như trên
TH2: Nếu \(\prod (a+b)\prod (a^2+b^2)-12^3=0\)
Từ $(*)$ ta suy ra \(\left\{\begin{matrix} 12c-2015\geq 0\\ 12a-2015\geq 0\\ 12b-2015\geq 0\end{matrix}\right.\Rightarrow a,b,c\geq \frac{2015}{12}\)
Do đó: \(\prod (a+b)\prod (a^2+b^2)\geq (\frac{2015}{6})^3(\frac{2.2015^2}{12^2})^3>12^3\)
\(\Rightarrow \prod (a+b)\prod (a^2+b^2)-12^3>0\) nên TH này loại.
Vậy.........