K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

Phản chứng. Giả sử PT đã cho không có nghiệm nào với mọi số thực $a,b,c$.

Điều này tương đương với các PT con

\((1):ax^2+2bx+c=0; (2):bx^2+2cx+a=0;(3): cx^2+2ax+b=0\)không có nghiệm với mọi $a,b,c\in\mathbb{R}$
\(\Rightarrow \left\{\begin{matrix} \Delta'_1=b^2-ac< 0\\ \Delta'_2=c^2-ab< 0\\ \Delta'_3=a^2-bc< 0\end{matrix}\right.\)

\(\Rightarrow b^2-ac+c^2-ab+a^2-bc< 0\)

\(\Leftrightarrow 2b^2-2ac+2c^2-2ab+2a^2-2bc< 0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2< 0\) (vô lý với mọi $a,b,c$ thực)

Vậy điều giả sử là sai. Nghĩa là pt đã cho luôn có nghiệm với mọi $a,b,c\in\mathbb{R}$

10 tháng 6 2021

giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)

\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)

Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)

\(\Rightarrow17a+3b+c=6a+b=0\)

\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)

Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)

pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)

5 tháng 2 2022

a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)

Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)

Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.

Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.

b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)

Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)

Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)

Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):

\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)

Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)

Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)

NV
30 tháng 7 2021

\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)

\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)

\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm

\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm

1 tháng 8 2018

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

AI CHƠI BANG BANG 2 THÌ TÍCH MÌNH