Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\), \(a_i\ne a_j\)
a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn
Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)
Có tất cả 9*\(A_9^3\)số cần lập
b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)
+ Với a4=0 có 1 cách chọn
Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)
Có 1*\(A_9^3\)số cần lập.
+Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn
Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)
Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập
có 4*8*\(A_8^2\)
vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Số tự nhiên đó có dạng \(\overline{abcde}\)
a, a có 5 cách chọn.
b có 5 cách chọn.
c có 4 cách chọn.
d có 3 cách chọn.
e có 2 cách chọn.
\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.
b, TH1: \(e=0\)
a có 5 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.
TH2: \(e\ne0\)
a có 5 cách chọn.
e có 2 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.
Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.
c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.
TH2: \(e=5\)
a có 4 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.
Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
sửa lại câu b
Nếu e={1;3;5;7;9} thì a có 8 cách chọn; b có 8 cách chọn; c có 7 cách chọn; d có 6 cách chọn
Vậy có 8.8.7.6.5=13440 số thỏa mãn đề bài
Xin lỗi bạn nhé
a, Giả sử số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0\right)\)
- Chọn a có 9 cách.
- Chọn b, c, d, e có \(A^4_9\) cách
⇒ Có: \(9.A^4_9=27216\) (số)
b, Gọi số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0,e\in\left\{1,3,5,7,9\right\}\right)\)
- Chọn e có 5 cách.
- Chọn a có 8 cách.
- Chọn b, c, d có \(A^3_8\) cách.
⇒ Có \(5.8.A^3_8=13440\) (số)