K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

sửa lại câu b

Nếu e={1;3;5;7;9} thì a có 8 cách chọn; b có 8 cách chọn; c có 7 cách chọn; d có 6 cách chọn

Vậy có 8.8.7.6.5=13440 số thỏa mãn đề bài

Xin lỗi bạn nhé

8 tháng 7 2021

a, Giả sử số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0\right)\)

- Chọn a có 9 cách.

- Chọn b, c, d, e có \(A^4_9\) cách

⇒ Có: \(9.A^4_9=27216\) (số)

b, Gọi số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0,e\in\left\{1,3,5,7,9\right\}\right)\)

- Chọn e có 5 cách.

- Chọn a có 8 cách.

- Chọn b, c, d có \(A^3_8\) cách.

⇒ Có \(5.8.A^3_8=13440\) (số)

23 tháng 8 2021

a, Có \(5!=120\) số tự nhiên thỏa mãn yêu cầu bài toán.

b, Số có dạng \(\overline{abcde}\).

e có 3 cách chọn.

a có 4 cách chọn.

b có 3 cách chọn.

c có 2 cách chọn.

d có 1 cách chọn.

\(\Rightarrow\) Có \(3.4.3.2.1=72\) số tự nhiên thỏa mãn yêu cầu bài toán.

28 tháng 9 2021

Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\)\(a_i\ne a_j\)

a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn 

    Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)

Có tất cả 9*\(A_9^3\)số cần lập

b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)

   + Với a4=0 có 1 cách chọn

      Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)

      Có 1*\(A_9^3\)số cần lập.

   +Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn

     Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)

     Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập

     có 4*8*\(A_8^2\)

vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).

28 tháng 9 2021

 9*A39A93

 cái này tính kiểu gì thế bạn
15 tháng 8 2021

Nguyễn Việt Lâm giúp mk vs

NV
21 tháng 12 2022

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

21 tháng 12 2022

cho e hỏi chữ "A" bấm máy sao

23 tháng 8 2021

Số tự nhiên đó có dạng \(\overline{abcde}\)

a, a có 5 cách chọn.

b có 5 cách chọn.

c có 4 cách chọn.

d có 3 cách chọn.

e có 2 cách chọn.

\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.

b, TH1: \(e=0\)

a có 5 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.

TH2: \(e\ne0\)

a có 5 cách chọn.

e có 2 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.

Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.

c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.

TH2: \(e=5\)

a có 4 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.

Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.

28 tháng 9 2021

b, Số có 4 chữ số có dạng \(\overline{abcd}\).

a có 7 cách chọn.

b có 7 cách chọn.

c có 6 cách chọn.

d có 5 cách chọn.

\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.

28 tháng 9 2021

a, Có thể lập được \(\dfrac{7777-1000}{1}+1=6778\) số thỏa mãn.