Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa lại câu b
Nếu e={1;3;5;7;9} thì a có 8 cách chọn; b có 8 cách chọn; c có 7 cách chọn; d có 6 cách chọn
Vậy có 8.8.7.6.5=13440 số thỏa mãn đề bài
Xin lỗi bạn nhé
a, Giả sử số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0\right)\)
- Chọn a có 9 cách.
- Chọn b, c, d, e có \(A^4_9\) cách
⇒ Có: \(9.A^4_9=27216\) (số)
b, Gọi số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0,e\in\left\{1,3,5,7,9\right\}\right)\)
- Chọn e có 5 cách.
- Chọn a có 8 cách.
- Chọn b, c, d có \(A^3_8\) cách.
⇒ Có \(5.8.A^3_8=13440\) (số)
Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\), \(a_i\ne a_j\)
a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn
Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)
Có tất cả 9*\(A_9^3\)số cần lập
b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)
+ Với a4=0 có 1 cách chọn
Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)
Có 1*\(A_9^3\)số cần lập.
+Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn
Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)
Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập
có 4*8*\(A_8^2\)
vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).
(*) Lập các số 8 chữ số có 3 chữ số 9.
Đưa các chữ số vào ô:
. | . | . | . | . | . | . | . |
TH1: Có số 0
Đưa 0 vào : 7 cách
Lấy 3 ô bất kì trong 7 ô còn lại để chứa 3 chữ số 9: \(C^3_7\) cách
Chọn 4 chữ số trong 8 chữ số chưa dùng : \(A^4_8\) cách
=> TH1 có \(7\cdot C^3_7\cdot A^4_8=411600\)
TH2: Không có số 0
Lấy 3 ô bất kì trong 8 ô còn lại để chứa 3 chữ số 9: \(C^3_8\) cách
Chọn 5 chữ số trong 8 chữ số chưa dùng (không dùng 0) : \(A^5_8\) cách
=> TH2 có \(C^3_8A^5_8=376320\)
=> Lập được 411600 + 376320 =787920 số 8 chữ số có 3 chữ số 9
(*) Lập các số có 3 chữ số 9 mà 3 chữ số 9 đứng cạnh nhau :
Đặt \(\alpha=999\)
Đưa các chữ số vào ô:
\(\alpha\) | . | . | . | . | . |
TH1: Có số 0
Đưa 0 vào : 5 cách
Đưa \(\alpha\) vào : 5 cách
Chọn 4 chữ số trong 8 chữ số chưa dùng : \(A^4_8\) cách
=> TH1 : \(5\cdot5A^4_8=42000\)
TH2: Không có số 0
Đưa \(\alpha\) vào : 6 cách
Chọn 5 chữ số trong 8 chữ số chưa dùng (không dùng 0) : \(A^5_8\) cách
=> TH2: \(6\cdot A^5_8=40320\)
=> Lập được 42000 + 40320 =82320 số 8 chữ số có 3 chữ số 9 mà 3 chữ số 9 đứng cạnh nhau
Vậy lập được 787920 - 82320 = 705600 số 8 chữ số có 3 chữ số 9 mà 3 chữ số 9 không đứng cạnh nhau
Nguyễn Việt Lâm giúp mk vs