K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Phương trình hoành độ giao điểm là:

x-7=-2x-1

=>x+2x=-1+7

=>3x=6

=>x=2

Thay x=2 vào y=x-7, ta được:

y=2-7=-5

=>A(2;-5)

b: Thay x=2 và y=-5 vào y=mx+1, ta được:

\(m\cdot2+1=-5\)

=>2m=-6

=>m=-3

26 tháng 1 2024

a: Phương trình hoành độ giao điểm là:

x-7=-2x-1

=>x+2x=-1+7

=>3x=6

=>x=2

Thay x=2 vào y=x-7, ta được:

y=2-7=-5

=>A(2;-5)

b: Thay x=2 và y=-5 vào y=mx+1, ta được:

m⋅2+1=−5

=>2m=-6

=>m=-3

12 tháng 9 2023

- Vẽ đồ thị hàm số \(y = x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{1} =  - 3\) ta được điểm \(B\left( { - 3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(B\).

- Vẽ đồ thị hàm số \(y =  - x + 3\)

Cho \(x = 0 \Rightarrow y = 3\) ta được điểm \(A\left( {0;3} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 3}}{{ - 1}} = 3\) ta được điểm \(C\left( {3;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y =  - x + 3\) là đường thẳng đi qua hai điểm \(A\) và \(C\).

Từ đồ thị ta thấy giao điểm của hai đường thẳng là \(A\left( {0;3} \right)\).

Đường thẳng \({d_1}\) cắt trục \(Ox\) tại \(B\left( { - 3;0} \right)\).

Đường thẳng \({d_2}\) cắt trục \(Oy\) tại \(C\left( {3;0} \right)\).

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

3
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải

a. Theo bài ra ta có: \(x^2+x-2=0\)

\(\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=-\left(-2\right)+2=4\\y=-1+2=1\end{matrix}\right.\)

Vậy tọa độ giao điểm cần tìm là: \(\left(-2;4\right)\)\(\left(1:1\right)\)

b. Thay x = 2 ; y = -1 vào hpt ta có: 

\(\left\{{}\begin{matrix}8-a=b\\2+b=a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-a-b=-8\\-a+b=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=3\end{matrix}\right.\)

31 tháng 12 2023

ĐKXĐ: m ≠ 0 và m ≠ 3/2

a) Đồ thị hai hàm số đã cho là hai đường thẳng song song khi:

m = 3 - 2m

m + 2m = 3

3m = 3

m = 1 (nhận)

Vậy m = 1 thì đồ thị hai hàm số đã cho là hai đường thẳng song song

b) Đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau khi

m ≠ 3 - 2m

m + 2m ≠ 3

3m ≠ 3

m ≠ 1

Vậy m ≠ 0; m ≠ 1 và m ≠ 3/2 thì đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau

8 tháng 12 2023

a) Phương trình hoành độ giao điểm của d₁ và d₂

x + 2 = 5 - 2x

⇔ x + 2x = 5 - 2

⇔ 3x = 3

⇔ x = 1

Thay x = 1 vào d₁ ta có:

y = 1 + 2 = 3

⇒ Giao điểm của d₁ và d₂ là A(1; 3)

Thay tọa độ điểm A vào d₃ ta có:

VT = 3

VP = 3.1 = 3

⇒ VT = VP

Hay A ∈ d₃

Vậy d₁, d₂ và d₃ đồng quy

b) Thay tọa độ điểm A(1; 3) vào d₄ ta có:

m.1 + m - 5 = 3

⇔ 2m - 5 = 3

⇔ 2m = 3 + 5

⇔ 2m = 8

⇔ m = 8 : 2

⇔ m = 4

Vậy m = 4 thì d₁, d₂ và d₄ đồng quy

14 tháng 12 2023

a: Thay x=1 và y=4 vào y=mx+1, ta được:

\(m\cdot1+1=4\)

=>m+1=4

=>m=3

b: Để hai đường thẳng này song song với nhau thì

\(\left\{{}\begin{matrix}m^2=m\\m\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2-m=0\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne1\end{matrix}\right.\)

=>m=0

14 tháng 12 2023

thanks nha

15 tháng 12 2023

Bạn nhập lại hai hàm số đó nhé chính giữa mik không biết là dấu + hay - 

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) song song với nhau thì \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2m = 2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 2:2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\ - 5 \ne 1\end{array} \right.\left( {tm} \right)\)

Vậy \(m = 1\) thì hai đường thẳng \(y = 2mx - 5\) và \(y = 2x + 1\) song song với nhau.

b) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) cắt nhau thì \(a \ne a' \Rightarrow 2m \ne 2 \Leftrightarrow m \ne 2:2 \Leftrightarrow m \ne 1\). 

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

a)

* Xét đường thẳng y = x

Cho x = 1 suy ra y = 1 nên điểm (1; 1) thuộc đường thẳng y = x

Đường thẳng y = x đi qua 2 điểm O(0; 0) và (1; 1)\

* Xét đường thẳng y = -x + 2

Cho x = 2 thì y = -2 + 2 = 0 nên điểm (2; 0) thuộc đường thẳng y = - x+ 2

Cho y = 2 suy ra x = 0 nên điểm (0; 2 ) thuộc đường thẳng y = -x + 2

Đường thẳng y = - x + 2 đi qua hai điểm (2; 0) và (0; 2)

 

b) Giao điểm A của hai đường thẳng đã cho là A(1;1)

c) Cho y =0 ta được −x + 2 = 0 hay x = 2, suy ra B(2; 0).

Gọi C là giao điểm của đường thẳng y = −x + 2 và trục Oy. Suy ra C(0; 2). Dễ thấy tam giác OBC vuông cân tại O (vì OB = OC = 2).

Xét hai tam giác OAB và OAC có:

cạnh OA chung;

OB = OC;

\( \widehat {OBA} = \widehat {OCA} = 45^0\)

Do đó \(\Delta OAB = \Delta OAC\), từ đó suy ra AB = AC.

Điều này chứng tỏ A là trung điểm của BC, mà \(\Delta OBC \) cân tại O nên \(OA \bot AB\), tức là \(\Delta OAB\) vuông tại A.

d)

Đường thẳng y = x có hệ số góc bằng 1.

Đường thẳng y = - x + 1 có hệ số góc bằng -1

Tích của hai hệ số góc bằng -1