Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{c}=\frac{c}{b}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)
b) \(\frac{a}{c}=\frac{c}{b}\)\(\Rightarrow ab=c^2\)
\(\frac{b^2-a^2}{a^2+c^2}=\frac{b^2-ab+ab-a^2}{a^2+ab}=\frac{\left(b-a\right)b+\left(b-a\right)a}{a.\left(a+b\right)}=\frac{\left(b-a\right)\left(b+a\right)}{a.\left(a+b\right)}=\frac{b-a}{a}\)
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\)<=>\(\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số = nhau :
\(\frac{a}{c}=\frac{b}{d}\)\(=\frac{a-b}{c-d}\) <=> \(\frac{a}{c}\)\(=\frac{a-b}{c-d}\)<=> \(\frac{a}{a-b}=\frac{c}{c-d}\)
mấy bài kia cũng tương tự em ạ !
gợi ý: đặt chung cho cả 4 phần a/b = c/d = k( k khác 0)
=> a=bk; c=dk
rồi thay vào các biểu thức
CÓ : \(\frac{a}{c}=\frac{c}{b}\)=>\(ab=c^2\)
THẾ VÀO =>\(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a^2+ab}{b^2+ab}\)=\(\frac{a\left(a+b\right)}{b\left(a+b\right)}\)=\(\frac{a}{b}\)
Câu 1:
Ta có\(\frac{a}{c}=\frac{c}{b}=>ab=c^2\)
=>\(\frac{a^2+c^2}{c^2+b^2}=\frac{a^2+ab}{ab+b^2}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đccm\right)\)
Câu 2:
Theo bài ra, ta có:\(\frac{a}{c}=\frac{c}{b}\)
=>\(ab=c^2\)
Ta có: \(\frac{b-a}{a}=\frac{\left(b-a\right).\left(a+b\right)}{a.\left(a+b\right)}=\frac{b.\left(a+b\right)-a.\left(a+b\right)}{a^2+ab}\)
\(\frac{ab+b^2-\left(a^2+ab\right)}{a^2+c^2}=\frac{ab+b^2-a^2-ab}{a^2+c^2}=\frac{b^2-a^2}{a^2+c^2}\)
=>\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\left(đpcm\right)\)
MIK CHẮC CHẮN BÀI NÀY LÀ HOÀN TOÀN CHÍNH XÁC LUN!!!!!!!!
k ĐÚNG cho mik nha, rùi mai mốt có j thì giúp đỡ nhau nhiều.
Đặt :
\(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\b=ck\end{cases}\)\(\Rightarrow\begin{cases}a=ck^2\\b=ck\end{cases}\)
Thay vào ta có :
\(\frac{a^2+2b^2}{b^2+2c^2}=\frac{c^2k^4+4c^2k^2}{c^2k^2+4c^2}=\frac{c^2k^2\left(k^2+4\right)}{c^2\left(k^2+4\right)}=k^2=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
\(\Rightarrow\frac{a^2+2b^2}{b^2+2c^2}=\frac{a}{c}\)
1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cách khác:Từ giả thiết:\(c^2=ab\Rightarrow\frac{a}{c}=\frac{c}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)
Vậy ta có điều phải chứng minh
a/ Thay \(c^2=ab\) ta dc :
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\left(đpcm\right)\)