Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M N d d d1 d2 I
a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)
Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:
\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)
<=> 16y2-24y+9+9y2-9+12y-63y=0
<=>25y2-75y=0
<=> y=0=>x=1
hoặc y=3=>x=-3
Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)
b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)
=>tọa độ tâm I(0,5;3,5)
Gọi d1,d2 là các tiếp tuyến tại M và N
VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1
=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)
hay d1: x-7y-1=0
Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:
d2:7x+y+18=0
c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
=>tọa độ giao điểm là (-2,5;-0,5)
Câu 1:
Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)
\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)
Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt
Phương trình AB có dạng: \(x+y+c=0\)
Theo công thức diện tích tam giác:
\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)
\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)
\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)
Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)
TH1: \(x+y-1=0\Rightarrow y=1-x\)
Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)
Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM
TH2: tương tự.
Bạn tự làm nốt phần còn lại nhé
Đây là đề bài 1 chính thức nha bạn!
Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.
\(x^2+y^2-2x-4y-11=0\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-16=0\)
Thay tọa độ dạng tham số của d vào pt (C) ta được:
\(\left(1+2t-1\right)^2+\left(-2+t-2\right)^2-16=0\)
\(\Leftrightarrow4t^2+\left(t-4\right)^2-16=0\Leftrightarrow5t^2-8t=0\)
\(\Leftrightarrow t\left(5t-8\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=\frac{8}{5}\end{matrix}\right.\) \(\Rightarrow d\) cắt (C) tại 2 điểm A; B
Thay t vào pt đường thẳng d ta được tọa độ 2 giao điểm
\(A\left(1;-2\right)\) và \(B\left(\frac{21}{5};\frac{-2}{5}\right)\)
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
Bài 1:
\(2c=8\Rightarrow c=4\)
Gọi phương trình (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)
Do A thuộc (E) nên \(\frac{0}{a^2}+\frac{9}{a^2-16}=1\Rightarrow a^2=25\)
Phương trình (E): \(\frac{x^2}{25}+\frac{y^2}{9}=1\)
Bài 2:
\(2a=10\Rightarrow a=5\)
\(e=\frac{c}{a}\Rightarrow c=e.a=\frac{3}{5}.5=3\)
Phương trình elip:
\(\frac{x^2}{25}+\frac{y^2}{16}=1\)
Câu 3:
\(x-2y+3=0\Rightarrow x=2y-3\)
Thay vào pt đường tròn ta được:
\(\left(2y-3\right)^2+y^2-2\left(2y-3\right)-4y=0\)
\(\Leftrightarrow5y^2-20y+15=0\)
\(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=3\Rightarrow x=3\end{matrix}\right.\)
Tọa độ 2 giao điểm: \(A\left(-1;1\right)\) và \(B\left(3;3\right)\)
Câu 4:
Gọi d' là đường thẳng song song với d \(\Rightarrow\) pt d' có dạng \(x-y+c=0\)
Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)
\(\Rightarrow\frac{\left|0.1-0.1+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Rightarrow\left|c\right|=2\Rightarrow c=\pm2\)
Có 2 pt đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y+2=0\\x-y-2=0\end{matrix}\right.\)
a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)
vậy C (-2y -1 ; y ).
tam giác ABC cân tại C khi và chỉ khi
CA = CB \(\Leftrightarrow\) CA2 = CB2
\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2
\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2
giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)
vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)
b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :
\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2
\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17
\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)
vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)