K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

\(C=4+2^2+2^3+...+2^{2005}\)

\(\Rightarrow2C=8+2^3+2^4+...+2^{2006}\)

\(\Rightarrow2C-C=\left(8+2^3+2^4+...+2^{2006}\right)-\left(4+2^2+2^3+...2^{2005}\right)\)

\(\Rightarrow C=4+2^2+2^3+...+2^{2005}\)

\(\Rightarrow C=2^{2006}\)\(\text{là lũy thừa của 2}\)

13 tháng 6 2021

1+1 bằng 2 nhé

19 tháng 8 2021

Đặt A=22+23+..+22005
 
2A=23+24+..+22006
suy ra 2A-A=(23+24+..+22006) - (22+23+..+22005)
A=22006-22
suy ra C=4+22006-4
           C=22006    .Là lũy thừa của 2 (đpcm)

 

19 tháng 8 2021

C=4+22+23+...+22005

2C=8+23+24+...+22006

2C-C=(8+23+24+...+22006)-(4+22+23+...+22005)

C=4+22005-22

C=22-22+22005

C=22005(đpcm)

27 tháng 11 2019

Em kiểm tra lại đề bài nhé.

c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath

b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath

a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath

10 tháng 3 2019

Ta có A = 2A – A = 2( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )

2 + 4 + 2 3 + 2 4 + . . . + 2 51  – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 50 )

= 6 + 2 3 + 2 4 + . . . + 2 51  – ( 7 + 2 3 + . . . + 2 50 ) =  2 51 - 1

Suy ra : A + 1 =  2 51

Vậy A+1 là một lũy thừa của 2

2 tháng 1 2020

13 tháng 12 2021

THI TỰ LÀM

13 tháng 12 2021

=(( thi với thằng em 

 

20 tháng 8 2017

A=đã cho

=>2A=8+2^3+2^4+...+2^21

=>2A-A=8-4+2^21-2^2

=>A=2+2^21-4

=>A=2^21

Vậy...

Lưu ý ^ là số mũ

=>2A=8+2^3+2^4+...+2^21

=>2A-A=8-4+2^21-2^2

=>A=2+2^21-4

=>A=2^21

Vậy...

12 tháng 1 2019

\(~~~~hd~~~~\)

\(A=3+3^2+3^3+...........+3^{100}\)

\(\Rightarrow3A=3^2+3^3+3^4+.........+3^{101}\)

\(\Rightarrow3A-A=2A=3^{101}-3\Rightarrow A=\frac{3^{101}-3}{2}\)

26 tháng 10 2023

\(A=4+2^2+2^3+...+2^{2006}\)

\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)

Thay \(B=2^{2007}-4\) vào A, ta được:

\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)

$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.

Vậy: ...