Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A có nghĩa khi:
\(\left(x+1\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\x-3\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\ge3\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\le3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-1\end{matrix}\right.\)
b) Ta có:
\(B=\sqrt{x+1}\cdot\sqrt{x-3}=\sqrt{\left(x+1\right)\left(x-3\right)}\)
Nên: A=B nên tập nghiệm xác định như nhau
c) \(A=B\) khi:
\(\sqrt{\left(x+1\right)\left(x-3\right)}=\sqrt{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow1=1\) (luôn đúng)
\(\Rightarrow x\in R\)
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)]^2-(m^2+4) >= 0`
`<=>m^2+2m+1-m^2-4 >= 0`
`<=>m >= 3/2`
Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`
Ta có:`C=x_1+x_2-x_1.x_2+3`
`<=>C=2m+2-m^2-4+3`
`<=>C=-m^2+2m+1`
`<=>C=-(m^2-2m+1)+2`
`<=>C=-(m-1)^2+2`
Vì `-(m-1)^2 <= 0 AA m >= 3/2`
`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`
Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)
Vậy không tồn tại `m` để `C` có `GTLN`
chỉ viec tinh denta va tui chac chan la denta k con thm so m va >0 nen la dpcm