\(\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y}=\dfrac{u}{v}=\dfrac{x-u}{y-v}\)

\(\Rightarrow x\left(y-v\right)=y\left(x-u\right)\)

Mà x > y

\(\Rightarrow y-v< x-u\)

\(\Rightarrow x+v>y+u\left(đpcm\right)\)

Vậy...

5 tháng 6 2017

ta có:\(x>y>u>v\)

\(\Rightarrow x^2>y^2>u^2>v^2\)

giả sử x+v>y+u là đúng

\(\Rightarrow\left(x+v\right)^2>\left(y+u\right)^2\\ \Leftrightarrow x^2+v^2+2xv>y^2+u^2+2yu\\ \Leftrightarrow x^2-y^2+v^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow x^2-x^2+u^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow yu-xv=0\\ \Leftrightarrow yu=xv\\ \Rightarrow\dfrac{x}{y}=\dfrac{u}{v}\left(đúng\right)\)

do đó: \(x+v>y+u\) đúng.

27 tháng 11 2022

a: Cho x và y là hai đại lượng tỉ lệ nghịch. Tìm hệ số tỉ lệ k khi biết rằng x1=12 và y1=16

b: Cho x tỉ lệ thuận với y theo hệ số tỉ lệ k=3/4. Tìm y khi x=-1 và x=24

29 tháng 10 2017

Câu 1 :

a. Theo đề bài ta có :

\(\dfrac{x}{2}=\dfrac{y}{5}\)\(x+y=21\)

Áp dụng t/c dãy tỉ số bằng nhau :

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\Rightarrow x=2.3=6\\\dfrac{y}{5}=3\Rightarrow y=3.5=15\end{matrix}\right.\)

Vậy..............

b. Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}2k\\3y\end{matrix}\right.\)

\(x.y=54\)

hay \(2k.3k=54\)

\(\Rightarrow6.k^2=54\)

\(\Rightarrow k^2=9=\left(\pm3\right)^2\)

Với \(k=3\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\end{matrix}\right.\)

Với \(k=-3\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).3=-9\end{matrix}\right.\)

Vậy..............

c. Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{12}{2}=6\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=6\Rightarrow x=7.6=42\\\dfrac{y}{5}=6\Rightarrow y=5.6=40\end{matrix}\right.\)

Vậy............

16 tháng 8 2017

a)Ta có: ad-bc=1 => ad>bc=>\(\dfrac{a}{b}\)>\(\dfrac{c}{d}\)=>x>y (*)
Ta có: cn-dm=1=>cn > dm=> \(\dfrac{c}{d}\)>\(\dfrac{m}{n}\)=> y>z(**)
Từ (*) và (**) ta có: \(\dfrac{m}{n}\)< \(\dfrac{c}{d}\)<\(\dfrac{a}{b}\)
hay z<y<x
b) Ta có: ad-bc=1=> ad=bc+1
cn-dm=1=> cn=dm+1
Ta lại có: cb+dm+1=cb+1+dm
hay cb+cn=ad+dm
=> c(b+n)=d(a+m)
=> \(\dfrac{c}{d}\)=\(\dfrac{a+m}{b+n}\)
Vậy y = t

24 tháng 6 2017

Ta có: \(x< y\Leftrightarrow\dfrac{a}{m}< \dfrac{b}{m}\Leftrightarrow a< b\)(1)

Từ (1), Suy ra:

\(a< b\Leftrightarrow a+a< b+a\Leftrightarrow2a< a+b\left(2\right)\)

\(a< b\Leftrightarrow a+b< b+b\Leftrightarrow a+b< 2b\left(3\right)\)

Từ (2);(3), ta có:

\(2a< a+b< 2b\Leftrightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

\(\Leftrightarrow x< z< y\left(đpcm\right)\)

25 tháng 6 2017

Lạc đề rồi kìa ucche

3 tháng 10 2017

theo bài ra ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{4}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{4}=\dfrac{x^2+y^2}{9+4}=\dfrac{52}{13}=4\)

\(\Rightarrow x^2=4.9=36\Rightarrow x=\pm6\\ \Rightarrow y^2=4.4=16\Rightarrow y=\pm4\)

mà x > 0; y > 0 \(\Rightarrow x=6;y=4\)

vậy x = 6; y = 4

4 tháng 10 2017

Theo bài ra ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{4}=\dfrac{x^2+y^2}{9+4}=\dfrac{52}{13}=4\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{9}=4\Rightarrow x=36\Rightarrow x\pm6\\\dfrac{y^2}{4}=4\Rightarrow y=16\Rightarrow y=\pm4\end{matrix}\right.\)

\(x>0,y>0\) \(\Rightarrow x=6,y=4\)

Vậy ........

Chúc bạn học tốt!

25 tháng 5 2017

Vì x < y

=> a < b

Theo đề bài , ta có :

\(x=\dfrac{a}{m}=\dfrac{2a}{2m}\) ; \(y=\dfrac{b}{m}=\dfrac{2b}{2m}\) ; \(z=\dfrac{a+b}{m}\)

Từ a<b , ta lại có :

a < b => a + a < a + b => 2a < a + b (1)

a < b => a + b < b + c => a + b < 2b (2)

Từ (1) và (2)

=> \(\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\)

<=> \(x< y< z\)

25 tháng 5 2017

Cảm ơn bạn ok