Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Từ giả thiết ta có
b 2 = a c a + c = 2 ( b + 8 ) b + 8 2 = a ( c + 64 ) ⇔ b 2 = a c a + c = 2 ( b + 8 ) b + 8 2 = b 2 + 64 a ⇔ b 2 = a c c = 7 a + 8 b = 4 a − 4
⇔ 4 a - 4 2 = a 7 a + 8 c = 7 a + 8 b = 4 a - 4 ⇔ 9 a 2 - 40 a + 16 = 0 c = 7 a + 8 b = 4 a - 4 ⇔ a = 4 ; b = 12 ; c = 36 a = 4 9 ; b = - 20 9 ; c = 100 9
Do a,b,c tạo thành một dãy số tăng nên a = 4 ; b = 12 ; c = 36 .
Suy ra
a − b + 2 c = 4 − 12 + 2.36 = 64.
Chọn C.
Phương pháp:
Sử dụng tính chất: a, b, c theo thứ tự là ba số hạng liên tiếp của một cấp số cộng thì a + c = 2b.
Cách giải:
Do a, b, c theo thứ tự là ba số hạng liên tiếp của một cấp số cộng nên a + c = 2b.
Mà a + b + c = 15 ⇒ 3 b = 15 ⇔ b = 5
Ta có điều kiện lập cấp số cộng:
x = 5 + 15 2 y = x + y 2 ⇔ x = 10 y = 20 ⇒ 3 x + 2 y = 70
Chọn đáp án B.
Chú ý ba số a, b, c theo thứ tự lập thành cấp số cộng ⇔ b = a + c 2
Đáp án D
Phương pháp:
Sử dụng công thức tổng quát của CSC và tính chất của CSN
Cách giải:
a, b, c lần lượt là số thứ nhất, thứ tư và thứ tám của một cấp số cộng công sai là s ≠ 0
nên ta có a, b, c theo thứ tự tạo thành một cấp số nhân với công bội khác 1 nên ta có
Đáp án D.