K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 10 2019

a/ ĐK: \(3x+1\ge0\Rightarrow x\ge-\frac{1}{3}\)

\(x^2-7x+10=\left(3x+1\right)^2\)

\(\Leftrightarrow x^2-7x+10=9x^2+6x+1\)

\(\Leftrightarrow8x^2+13x-9=0\Rightarrow\left[{}\begin{matrix}x=\frac{-13-\sqrt{457}}{16}< -\frac{1}{3}\left(l\right)\\x=\frac{-13+\sqrt{457}}{16}\end{matrix}\right.\)

Pt có 1 nghiệm

b/ \(B\cap C=\varnothing\Rightarrow A\cap B\cap C=\varnothing\)

c/ Do \(VT\ge0\Rightarrow VP\ge0\Rightarrow-x\ge0\Rightarrow x\le0\)

Chỉ có đáp án A thỏa mãn, ko cần giải pt

9 tháng 12 2020

6.B

7.A

8.A

9.B

10.A

27 tháng 11 2019

Hỏi đáp Toán

Trắc nghiệm: Câu 1. Tìm mệnh đề đúng: A. \(a< b\Leftrightarrow ac< bc\) B. \(a< b\Leftrightarrow a+c< b+c\) C. \(\left\{{}\begin{matrix}a< b\\c< d\end{matrix}\right.\Rightarrow ac< bd\) D. \(a< b\Leftrightarrow\dfrac{1}{a}>\dfrac{1}{b}\) Câu 2. Tìm mệnh đề đúng: A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\) B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\dfrac{a}{c}>\dfrac{b}{d}\) C....
Đọc tiếp

Trắc nghiệm:

Câu 1. Tìm mệnh đề đúng:

A. \(a< b\Leftrightarrow ac< bc\)

B. \(a< b\Leftrightarrow a+c< b+c\)

C. \(\left\{{}\begin{matrix}a< b\\c< d\end{matrix}\right.\Rightarrow ac< bd\)

D. \(a< b\Leftrightarrow\dfrac{1}{a}>\dfrac{1}{b}\)

Câu 2. Tìm mệnh đề đúng:

A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\)

B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\dfrac{a}{c}>\dfrac{b}{d}\)

C. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow a-c>b-d\)

D. \(\left\{{}\begin{matrix}a>b>0\\c>d>0\end{matrix}\right.\Rightarrow ac>bd\)

Câu 3. Tìm mệnh đề sai:

A. \(a< b\Rightarrow a^2< b^2\)

B. \(a< b\Rightarrow a^3< b^3\)

C. \(0< a< b\Rightarrow\sqrt{a}< \sqrt{b}\)

D. \(a< b\Rightarrow\sqrt[3]{a}< \sqrt[3]{b}\)

Câu 4. Cho 2 phát biểu (1) \(\left|x\right|\ge-x\) và (2) \(\left|x\right|\ge x\)

A. Chỉ phát biểu (1) đúng

B. Chỉ phát biểu (2) đúng

C. Cả (1) và (2) đều đúng

D. Cả (1) và (2) đều sai

Câu 5. Nếu \(a>b;c>d\) thì bất đẳng thức nào sau đây luôn đúng

A. \(\dfrac{a}{c}>\dfrac{b}{d}\)

B. \(ac>bd\)

C. \(a-c>b-d\)

D. \(a+c>b+d\)

Câu 6. GTLN của hàm số \(f\left(x\right)=\left(x+3\right)\left(5-x\right)\) là:

A. 16

B. 0

C. -3

D. 5

Câu 7. Cho \(x>0;y>0\)\(xy=6\). GTNN của \(x^2+y^2\) là:

A. 12

B. 6

C. 14

D. 10

4
16 tháng 1 2019

1.b

16 tháng 1 2019

2.d

12 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\). Mà theo BĐT AM-GM ta có:

\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)

Đẳng thức xảy ra khi a=b=c=d

 

5 tháng 8 2016

là \(\frac{2}{3}\) nha

NV
18 tháng 4 2020

22.

Đường thẳng d có 1 vtpt là \(\left(2;-3\right)\)

Do đó \(\left(-3;2\right)\) ko là 1 vtpt của d (vì ko thể biểu diễn thông qua vt (2;-3)

23.

Thay tọa độ 4 điểm vào thì điểm A(5;3) ko thỏa mãn

24.

Đường thẳng d nhận \(\left(3;5\right)\) là 1 vtpt nên nhận \(\left(5;-3\right)\) là 1 vtcp

\(\Rightarrow\) d có hệ số góc là \(-\frac{3}{5}\)

Đáp án C sai