\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)

\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)

\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)

\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\) 

\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)

\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)

\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)

\(B=-1\) (2019 số -1) 

Mà: \(-1< \dfrac{1}{2}\)

\(\Rightarrow B< \dfrac{1}{2}\)

19 tháng 9 2023

 \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1

Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:

        (2020 - 2):1 + 1 = 2019 (số hạng)

Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)

 

 

 

 

 

20 tháng 7 2018

A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)

= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)

= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)

= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)

= \(\dfrac{215}{1}=215\)

20 tháng 7 2018

B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)

= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)

= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)

= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)

= \(\dfrac{300}{2}=150\)

1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)

=>4x=18

hay x=9/2

2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)

=>4x=108

hay x=27

3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)

\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)

=>4x=12

hay x=3

20 tháng 12 2017

1/\(\dfrac{-2}{5}\)

2/-21

21 tháng 12 2017

1/ \(4\left(\dfrac{-1}{2}\right)^3+\dfrac{1}{2}:5\)

\(=4.\dfrac{-1}{8}+\dfrac{1}{2}.\dfrac{1}{5}\)

\(=\dfrac{-1}{2}+\dfrac{1}{10}\)

\(=\dfrac{-5}{10}+\dfrac{1}{10}\)

\(=\dfrac{-4}{10}\)

\(=\dfrac{-2}{5}\)

2/ \(17\dfrac{1}{5}:\left(-\dfrac{5}{7}\right)-2\dfrac{1}{5}.\left(-\dfrac{7}{5}\right)\)

\(=\dfrac{86}{5}.\left(\dfrac{-7}{5}\right)-\dfrac{11}{5}.\left(\dfrac{-7}{5}\right)\)

\(=\dfrac{-7}{5}.\left(\dfrac{86}{5}-\dfrac{11}{5}\right)\)

\(=\dfrac{-7}{5}.15\)

\(=-21\)

6 tháng 12 2017

B = .................

Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0

\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)

6 tháng 12 2017

Mình làm câu 1,2 trước, câu 3 sau

Câu 1:

\(\sqrt{x^2}=0\)

=> \(\left(\sqrt{x^2}\right)^2=0^2\)

\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Câu 2:

\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)

\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)

14 tháng 9 2017

a, \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2=\left(\dfrac{5}{3}-\dfrac{1}{4}\right).\left(\dfrac{1}{20}\right)^2=\dfrac{17}{12}.\dfrac{1}{400}=\dfrac{17}{4800}\)

b, \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^3=2:\left(-\dfrac{1}{2}\right)^3=2:-\dfrac{1}{8}=2.-8=-16\)

14 tháng 9 2017

\(a.\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)

\(=\left(\dfrac{5}{3}-\dfrac{1}{4}\right).\left(\dfrac{1}{20}\right)^2\)

\(=\left(\dfrac{17}{12}\right).\dfrac{1}{400}\)

\(=\dfrac{17}{4800}\)

\(b.2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^3\)

\(=2:\left(-\dfrac{1}{6}\right)^3\)

\(=2:\left(-\dfrac{1}{216}\right)\)

\(=\left(-432\right)\)

2 tháng 10 2017

bai 1

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)

\(A=\left(\dfrac{1-2}{2}\right)\left(\dfrac{1-3}{3}\right).....\left(\dfrac{1-9}{10}\right)\)

\(A=-\left(\dfrac{1.2.3.....8.9}{2.3....9.10}\right)=-\dfrac{1}{10}>-\dfrac{1}{9}\)

tính a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\) b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\) c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\) d)...
Đọc tiếp

tính

a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)

b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)

c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)

e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)

f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)

h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)

3
7 tháng 10 2017

c)

Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)

7 tháng 10 2017

d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\dfrac{1}{4}:2\)

\(=3-1+\dfrac{1}{8}\)

\(=\dfrac{17}{8}\)

24 tháng 9 2017

Bài 2:

\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-2}{5}\right)^2\)

\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3.\left(\dfrac{2}{5}\right)^2\)

\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^5\)

\(\dfrac{2}{5}\ne\pm1;\dfrac{2}{5}\ne0\) nên \(x>5\)

Vậy \(x>5\) thoả mãn yêu cầu đề bài.

Chúc bạn học tốt!!!

24 tháng 9 2017

Bài 1:

\(C=\left(\dfrac{1}{2^2-1}\right)\left(\dfrac{1}{3^2-1}\right).....\left(\dfrac{1}{100^2-1}\right)\)

\(C=\left(\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right).....\left(\dfrac{1}{\left(100-1\right)\left(100+1\right)}\right)\)

\(C=\dfrac{1}{1.3}\dfrac{1}{2.4}.....\dfrac{1}{99.101}=\dfrac{1}{101!}\)

Chúc bạn học tốt!!!

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...