Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔBAC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔDBC có
HB<HC
HB là hình chiếu của DBtrên BC
HC là hình chiếu của DC trên BC
Do đó: DB<DC
=>\(\widehat{DCB}< \widehat{DBC}\)
Ta có:
A+B+C=180o(tổng 3 góc trong 1 tam giác)
\(\rightarrow\)C+C=180o
\(\rightarrow\)C=90o=A+B
Lại có:
2A=3B\(\Rightarrow\)B=\(\frac{2}{3}\)A
\(\Rightarrow\)A+B=90o
\(\Rightarrow\)\(\frac{2}{3}\)A+A=90o
\(\Rightarrow\)A\(\times\)(\(\frac{2}{3}\)+1)=90o
\(\Rightarrow\)A\(\times\)\(\frac{5}{3}\)=90o
\(\Rightarrow\)A=54o
Vậy A=54o
Học tốt
Bài 2: Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Dang Khanh Ngoc - Toán lớp 7 - Học toán với OnlineMath
A B C D
1) \(\widehat{ADB}\) là góc ngoài của t/giác ABC => \(\widehat{ADB}=\widehat{C}+\widehat{DAC}\)
\(\widehat{ADC}\)là góc ngoài của t/giác AD => \(\widehat{ADC}=B+\widehat{DAB}\)
Mà \(\widehat{B}=\widehat{C}\)(gt); \(\widehat{DAB}=\widehat{DAC}\) (gt)
=> \(\widehat{DAB}=\widehat{DAC}\)
2) Xét t/giác ABD và t/giác ADC
có: \(\widehat{BAD}=\widehat{CAD}\) (gt)
AD : chung
\(\widehat{ADB}=\widehat{ADC}\)(cmt)
=> t/giác ABD = t/giác ADC (g.c.g)
c. Xét △ABH có: ^AHB = 90o
⇒ ^BAH + ^B = 90o (hai góc nhọn phụ nhau) (1)
Xét △AHC có: ^AHC = 90o
⇒ ^CAH + ^C = 90o (hai góc nhọn phụ nhau) (2)
Từ (1) và (2)
Mà ^C > ^B (cmt)
⇒ ^CAH > ^BAH (đpcm)