Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(BD< CE\left(gt\right)\)
=> \(\frac{2}{3}BD< \frac{2}{3}CE\) (tính chất trọng tâm của tam giác)
Hay \(BG< CG.\)
Trong \(\Delta BDC\) có \(\widehat{GBC}\) đối diện với cạnh \(GC;\widehat{GCB}\) đối diện với cạnh \(GB.\)
Mà \(GB< GC\left(cmt\right)\)
=> \(\widehat{GCB}< \widehat{GBC}\) (theo quan hệ giữa góc và cạnh đối điện trong tam giác)
Chúc bạn học tốt!
Xét \(\Delta ABD\)và \(\Delta HBD\)có:
\(\widehat{BAD}=\widehat{BHD}=90^o\left(gt\right)\)
BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD=\Delta HBD\left(CH-GN\right)\)
A B C D
1) \(\widehat{ADB}\) là góc ngoài của t/giác ABC => \(\widehat{ADB}=\widehat{C}+\widehat{DAC}\)
\(\widehat{ADC}\)là góc ngoài của t/giác AD => \(\widehat{ADC}=B+\widehat{DAB}\)
Mà \(\widehat{B}=\widehat{C}\)(gt); \(\widehat{DAB}=\widehat{DAC}\) (gt)
=> \(\widehat{DAB}=\widehat{DAC}\)
2) Xét t/giác ABD và t/giác ADC
có: \(\widehat{BAD}=\widehat{CAD}\) (gt)
AD : chung
\(\widehat{ADB}=\widehat{ADC}\)(cmt)
=> t/giác ABD = t/giác ADC (g.c.g)
Bài 1:
a: \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔBAC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔDBC có
HB<HC
HB là hình chiếu của DBtrên BC
HC là hình chiếu của DC trên BC
Do đó: DB<DC
=>\(\widehat{DCB}< \widehat{DBC}\)
Bạn đăng tận 2 lần liền luôn? Đỗ Duy Mạnh
2 bài khác nhau mà bn Vũ Minh Tuấn