\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(a,E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\left(Đk:x\ge0;x\ne\pm1\right)\)(Đề như này mới đúng!)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2x-2\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{7\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{5\sqrt{x}+2\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(5\sqrt{x}-5x\right)+\left(2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

Vậy...

\(b,\)Ta có:\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{-15+17-5\sqrt{x}}{\sqrt{x}+3}=\frac{\left(-15-5\sqrt{x}\right)+17}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)

Vì \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+3\ge3\forall x\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\Rightarrow-5+\frac{17}{\sqrt{x}+3}\le\frac{2}{3}\Rightarrow E\le\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

2 tháng 3 2020

Câu 3 :

\(ĐKXĐ:x>0\)

 \(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)

b) Để P = 3

\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)

\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)(tm)

Vậy để \(P=3\Leftrightarrow x=4\)

2 tháng 3 2020

Câu 1 : Hình như sai đề !! Mik sửa :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)

b) Để A < 2

\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)

\(\Leftrightarrow-1< 2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}>3\)

\(\Leftrightarrow\sqrt{x}>1,5\)

\(\Leftrightarrow x>2,25\)

Vậy để \(A< 2\Leftrightarrow x>2,25\)

30 tháng 8 2016

Mk làm như này, k biết có sai chỗ nào k. Nếu sai thì bạn sửa nhé.

A=\(\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{3+\sqrt{x}}\)

A=\(\frac{15\sqrt{x}-11-\left(3x-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

A=\(\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

A=\(\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

A=\(\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

A=\(\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

A=\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

13 tháng 12 2020

a) Với  \(x\ge0;x\ne1\)

\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{15\sqrt{x}-11-\left(3x-9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Vậy : \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b) \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)

\(A_{max}\Leftrightarrow\left(\frac{17}{\sqrt{x}+3}\right)_{max}\)

Vì \(x\ge0;x\ne1\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\\frac{17}{\sqrt{x}+3}>0\end{cases}A_{max}\Leftrightarrow}\left(\sqrt{x}+3\right)_{min}\Leftrightarrow\sqrt{x}_{min}\Leftrightarrow x=0\)

Vậy : \(A_{max}=\frac{17}{3}\Leftrightarrow x=0\)

c,d chưa làm được .-.

7 tháng 1 2021

c) Để \(A=\frac{1}{2}\)

<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{2}\)

<=> \(-10\sqrt{x}+4=\sqrt{x}+3\)

<=> \(-11\sqrt{x}=-1\)

<=> \(\sqrt{x}=\frac{1}{11}\)

<=> \(x=\frac{1}{121}\left(tm\right)\)

Vậy ...

d) \(A\le\frac{2}{3}\)

<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\le\frac{2}{3}\)

<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\le0\)

<=> \(\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\sqrt{x}+9}\le0\)

<=> \(\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)

Vì \(\hept{\begin{cases}-17\sqrt{x}\le0\\3\sqrt{x}+9>0\end{cases}}\) \(\Rightarrow\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)(luôn đúng)

=> Ta có ĐPCM

16 tháng 8 2019

Lần sau bạn chụp hết nhé, chứ vậy khí nhìn lắm á :))

5 tháng 7 2018

ai h dung minh giai cho

13 tháng 8 2019

ĐKXĐ: \(x>1\)

a) \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(P=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(2-3\sqrt{x}\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-5x-2+7\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-\left(\sqrt{x}-1\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b) \(P=\frac{1}{2}\Leftrightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{2}\)

\(\Leftrightarrow2\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)

\(\Leftrightarrow-10\sqrt{x}+2-\sqrt{x}-3=0\)

\(\Leftrightarrow-11\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=\frac{-1}{11}\)( vô lý )

Vậy không có giá trị của x thỏa mãn.

c) \(P\le\frac{2}{3}\)

\(\Leftrightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\le\frac{2}{3}\)

\(\Leftrightarrow3\left(-5\sqrt{x}+2\right)\le2\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow-15\sqrt{x}+6\le2\sqrt{x}+6\)

\(\Leftrightarrow-17\sqrt{x}\le0\) ( luôn đúng )

Ta có đpcm.

26 tháng 4 2020

ý b bạn nhân phá sai chứ ko p nó vô lý đâu