Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cô si cho 2 số ko âm \(\sqrt{a}\) và \(\sqrt{b}\) ta được:
\(\sqrt{a}+\sqrt{b}\ge2\sqrt{\sqrt{ab}}\)
Suy ta: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}=\sqrt[4]{ab}\)
=>điều cần chứng minh
(*) với k = 0 pt <=> \(x-2=0\Leftrightarrow x=2\) ( TM )
(*) với k khác 0 . pt là pt bậc 2
\(\Delta=\left(1-2k\right)^2-4k\left(k-2\right)=4k^2-4k+1-4k^2+8k=4k+1\)
Để pt có nghiệm hữu tỉ khi 4k + 1 là số chính phương
=> \(4k+1=a^2\) (1) Vì 4k + 1 là số lẻ => a^2 là số lẻ => a là số lẻ => a = 2n + 1 ( n thuộc Z ) thay vào (1) ta có
\(4k+1=\left(2n+1\right)^2=4n^2+4n+1\Leftrightarrow4k=4n\left(n+1\right)\Leftrightarrow k=n\left(n+1\right)\)
Vậy với k = n(n+1) thì pt luôn có nghiệm hữu tỉ ( n thuộc Z )
khó wa !!!!!!!!!!!!!!!!!!!!!!!!!!
mình ko giải được!!!!!!!!!!!!!!!!!!!!!!!
bạn tich cho minh nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Áp dụng BĐT Cauchy Schwarz dạng Engel ta có:
\(\frac{2010}{\sqrt{2011}}+\frac{2011}{\sqrt{2010}}\ge\frac{\left(\sqrt{2010}+\sqrt{2011}\right)^2}{\sqrt{2011}+\sqrt{2010}}=\sqrt{2010}+\sqrt{2011}\left(đpcm\right)\)
:))