Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x\(\ne\)1, x\(\ne\)-1
MTC (x-1)(x+1)
\(\Leftrightarrow\)(\(\frac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)+ \(\frac{2\left(x-1\right)}{MTC}\)-\(\frac{-\left(5-x\right)}{MTC}\)) : \(\frac{1-2x}{MTC}\)
\(\Rightarrow\)\(\left[-\left(x+1\right)+2\left(x-1\right)+\left(5-x\right)\right]:\left(1-2x\right)\)
\(\Leftrightarrow\frac{-x-1+2x-2+5-x}{1-2x}\)
=\(\frac{-2x+2x+2}{1-2x}\)
=\(\frac{2}{1-2x}\)
b. mình chỉ biết \(x< \frac{1}{2}\) thôi chứ ko biết làm sao
hình như là giải Bất phương trình \(\frac{2}{1-2x}>0\)
\(ĐKXĐ:x\ne\pm1\)
a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{4x^2}{1-x^2}\right):\frac{2x^2-2}{x^2-2x+1}\)
\(\Leftrightarrow A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4x^2}{x^2-1}\right):\frac{2\left(x^2-1\right)}{\left(x-1\right)^2}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{4x-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)
\(\Leftrightarrow A=\frac{-4x\left(x-1\right)^3}{2\left(x-1\right)^2\left(x+1\right)^2}\)
\(\Leftrightarrow A=\frac{-2x\left(x-1\right)}{\left(x+1\right)^2}\)
b) Thay x = -3 vào A, ta được :
\(A=\frac{\left(-2\right)\left(-3\right)\left(-3-1\right)}{\left(-3+1\right)^2}\)
\(\Leftrightarrow A=\frac{6.\left(-4\right)}{2^2}\)
\(\Leftrightarrow A=-6\)
c) Để A > -1
\(\Leftrightarrow-2x\left(x-1\right)>-\left(x+1\right)^2\)
\(\Leftrightarrow2x\left(x-1\right)< \left(x+1\right)^2\)
\(\Leftrightarrow2x^2-2x< x^2+2x+1\)
\(\Leftrightarrow x^2-4x-1< 0\)
\(\Leftrightarrow\left(x-2\right)^2-5< 0\)
\(\Leftrightarrow\left(x-2\right)^2< 5\)
Đoạn này bạn tự tìm giá trị x thỏa mãn là xong (Chú ý ĐKXĐ)
\(A=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1+x+x^2\right)}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(A=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+2x+1}\)
\(A=\left(\frac{-x-1}{\left(1-x\right)\left(x+1\right)}-\frac{x}{\left(1-x\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+2x+1}\)
\(A=\frac{-2x-1}{\left(1-x\right)\left(x+1\right)}:\frac{2x+1}{x^2+2x+1}\)
\(A=\frac{-\left(2x+1\right)}{\left(1-x\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)
\(A=\frac{-1}{1-x}.\frac{x+1}{1}\)
\(A=\frac{-x-1}{1-x}\)
a) \(ĐKXĐ:x\ne\pm2\)
\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)
\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)
\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)
\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)
\(\Leftrightarrow P=\frac{x+2}{x-2}\)
b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)
\(\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)
Loại \(x=-2\)
\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)
Vì P là số nguyên tố nên
\(P\in\left\{5;3;2\right\}\)
Vậy để P là số nguyên tố thì \(x\in\left\{3;4;6\right\}\)
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
a,\(ĐKXĐ:\hept{\begin{cases}x\ne\mp2\\x\ne3\\x\ne0\end{cases}}\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left[\frac{\left(x+2\right)^2}{\left(2-x\right)\left(x+2\right)}+\frac{4x^2}{\left(2-x\right)\left(x+2\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}\right]:\left[\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right]\)
\(=\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x\left(x+2\right)}{x+2}.\frac{x}{x-3}=\frac{4x^2}{x-3}\)
a.)Đkxđ bạn tự tìm nha!!!
A=\(\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow\)\(\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow\)\(\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+x+1}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+x+1}\)
\(\Leftrightarrow\)\(\frac{2x+1}{\left(x-1\right)\left(x+1\right)}:\frac{2x+1}{x^2+2x+1}\)
\(\Leftrightarrow\)\(\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)
\(\Leftrightarrow\)\(\frac{x+1}{x-1}\left(tm\text{đ}k\right)\)
b.)Thay \(x=\frac{1}{2}\)vào A \(\Rightarrow\)\(A=-3\)
a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\left(x\ne\pm2\right)\)
\(=\left(\frac{x}{x-2}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x+2}{x+1}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{x+1}=\frac{\left(x+1\right)^2\cdot\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\frac{x+1}{x-2}\)
vậy \(P=\frac{x+1}{x-2}\left(x\ne\pm2\right)\)
b) ta có \(P=\frac{x+1}{x-2}\left(x\ne\pm2\right)\)
ta có x=\(\frac{1}{2}\left(tm\right)\)thay vào P ta được \(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}=\frac{3}{2}:\left(\frac{-3}{2}\right)=\frac{3}{2}\cdot\frac{-2}{3}=-1\)
vậy P=-1 khi x=1/2
\(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\)
a) ĐKXĐ : \(x\ne\pm2\)
\(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\)
\(P=\left(\frac{x}{x-2}+\frac{1}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x+2}\)
\(P=\left(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{1}{\left(x+2\right)\left(x-2\right)}\right)\cdot\frac{x+2}{x+1}\)
\(P=\frac{x^2+2x+1}{\left(x+2\right)\left(x-2\right)}\cdot\frac{x+2}{x+1}\)
\(P=\frac{\left(x+1\right)^2\cdot\left(x+2\right)}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}\)
\(P=\frac{x+1}{x-2}\)
b) Thế x = 1/2 vào P ta được :
\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}=\frac{\frac{3}{2}}{-\frac{3}{2}}=-1\)