Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2n + 15 chia hết cho n + 1
Hay : ( 2n + 2 ) + 13 chia hết cho n + 1
Mà : 2n + 2 chia hết cho n +1
Suy ra : 13 chia hết cho n + 1
n + 1 thuộc ước của 13
Nên : n + 1 thuộc ( 1; 13 )
: n thuộc ( 0 ; 12 )
Ta có : 2n + 15 chia hết cho n + 1
Hay : ( 2n + 2 ) + 13 chia hết cho n + 1
Mà : 2n + 2 chia hết cho n +1
Suy ra : 13 chia hết cho n + 1
n + 1 thuộc ước của 13
Nên : n + 1 thuộc ( 1; 13 )
: n thuộc ( 0 ; 12 )
A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)
Vì\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)
+)\(n-3=1\Leftrightarrow n=4\)(TM đk)
+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)
+)\(n-3=11\Leftrightarrow n=14\)(TMđk)
+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)
Vậy x={4;2;14;-8} thì A\(\in\)Z
ĐK: \(n\ne3\)
\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)
Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)
Để A nguyên => 3A nguyên
Khi đó \(3A=\frac{6n-9}{3n-1}=\frac{6n-2-7}{3n-1}=\frac{2\left(3n-1\right)-7}{3n-1}=2-\frac{7}{3n-1}\)
Vì \(2\inℤ\Rightarrow\frac{-6}{3n-1}\inℤ\Rightarrow-7⋮3n-1\Rightarrow3n-1\inƯ\left(-7\right)\)
=> \(3n-1\in\left\{1;7;-1;-7\right\}\)
=> \(3n\in\left\{2;8;0;-6\right\}\)
Vì n nguyên => \(3n\in\left\{0;-6\right\}\Rightarrow n\in\left\{0;-2\right\}\)
Vậy n \(\in\left\{0;-2\right\}\)
\(D=\frac{3n+5}{2n+3}\)
=> \(2D=\frac{6n+10}{2n+3}=\frac{6n+9+1}{2n+3}=\frac{3\left(2n+3\right)+1}{2n+3}\)
=> \(2D=3+\frac{1}{2n+3}\)
=> Để D là số nguyên thì 1 phải chia hết cho 2n+3 và \(\frac{1}{2n+3}\)phải là số lẻ
=> 2n+3 = {-1; 1}
+/ 2n+3=-1 => n=-2 => D=1
+/ 2n+3=1 => n=-1 => D=2
a, A là phân số chỉ khi \(2n-4\ne0\Rightarrow n\ne2\)
b, A \(\in Z\)\(\Leftrightarrow2n+2⋮2n-4\Leftrightarrow2n-4=6\Rightarrow6⋮2n-4\)
Vì \(2n-4\)là số chẵn nên :
\(2n-4=-6\Rightarrow2n=-2\Rightarrow n=-1\text{và }A=0\)
\(2n-4=-2\Rightarrow2n=2\Rightarrow n=1\text{và }A=-2\)
\(2n-4=2\Rightarrow2n=6\Rightarrow n=3\text{và }A=4\)
\(2n-4=6\Rightarrow2n=10\Rightarrow n=5\text{và }A=2\)
Vậy ....
a) Để A là phân số thì : 2n - 4 ≠ 0=>n ≠ 2
Vậy với n ≠ 2 thì A là phân số
b) Ta có A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2
Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)
n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1
Vậy n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.
Để (2n+15)/(n+1) nguyên
[2(x+1)+13]/(n+1) nguyên
2+ 13/(n+1) nguyên
n+1 thuộc Ư13
Ta có bảng
Vậy n=0;-2;12;-14
Để (2n+15)/(n+1) nguyên
[2(x+1)+13]/(n+1) nguyên
2+ 13/(n+1) nguyên
n+1 thuộc Ư13
Ta có bảng
Vậy n=0;-2;12;-14