K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

ĐK: y>0,y khác 1

a, \(M=\frac{y\sqrt{y}}{\sqrt{y}\left(\sqrt{y}-1\right)}-\frac{2y-\sqrt{y}}{\sqrt{y}\left(\sqrt{y}-1\right)}=\frac{y\sqrt{y}-2y+\sqrt{y}}{\sqrt{y}\left(\sqrt{y}-1\right)}\)

\(=\frac{\sqrt{y}\left(y-2\sqrt{y}+1\right)}{\sqrt{y}\left(\sqrt{y}-1\right)}=\frac{\sqrt{y}\left(\sqrt{y}-1\right)^2}{\sqrt{y}\left(\sqrt{y}-1\right)}=\sqrt{y}-1\)

b, Thay y vào M ta dc: \(M=\sqrt{3+\sqrt{8}}-1=\sqrt{2+2\sqrt{2}.1+1}-1\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}-1=\left|\sqrt{2}+1\right|-1=\sqrt{2}+1-1=\sqrt{2}\)

20 tháng 6 2021

a) ĐKXĐ: \(x,y\ge0\)

\(M=\dfrac{x\sqrt{y}-\sqrt{y}-y\sqrt{x}+\sqrt{x}}{1+\sqrt{xy}}=\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)}{1+\sqrt{xy}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1+\sqrt{xy}}=\sqrt{x}-\sqrt{y}\)

b) \(x=\left(1-\sqrt{3}\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)

\(y=3-\sqrt{8}\Rightarrow\sqrt{y}=\sqrt{3-\sqrt{8}}=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

\(\Rightarrow M=\left(\sqrt{3}-1\right)-\left(\sqrt{2}-1\right)=\sqrt{3}-\sqrt{2}\)

20 tháng 6 2021

giỏi zữ z

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}y\ge0\\y\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{1}{1-\sqrt{y}}+\dfrac{1}{1+\sqrt{y}}\right):\left(\dfrac{1}{1-\sqrt{y}}-\dfrac{1}{1+\sqrt{y}}\right)+\dfrac{1}{1-\sqrt{y}}\)

\(=\dfrac{1+\sqrt{y}+1-\sqrt{y}}{\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)}:\dfrac{1+\sqrt{y}-1+\sqrt{y}}{\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)}+\dfrac{1}{1-\sqrt{y}}\)

\(=\dfrac{2}{2\sqrt{y}}-\dfrac{1}{\sqrt{y}-1}\)

\(=\dfrac{\sqrt{y}-1-\sqrt{y}}{\sqrt{y}\left(\sqrt{y}-1\right)}\)

\(=\dfrac{-1}{\sqrt{y}\left(\sqrt{y}-1\right)}\)

2 tháng 9 2016

ĐKXĐ : \(x,y>0\)

a/ \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}+\frac{x+y}{\sqrt{xy}}\right)\)

\(=\left(\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right).\sqrt{x}}-\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}.\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{-\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x+y}=\sqrt{y}-\sqrt{x}\)

 

b/ Ta có ; \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)

\(\Rightarrow B=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)

 

 

 
20 tháng 6 2016

ĐKXĐ: \(\hept{\begin{cases}y>0\\y\ne1\end{cases}}\)

a/ Ta có: \(A=\left[\frac{\sqrt{y}^3-1}{\sqrt{y}\left(\sqrt{y}-1\right)}-\frac{\sqrt{y}^3+1}{\sqrt{y}\left(\sqrt{y}+1\right)}\right]:\frac{2\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}+1\right)\left(\sqrt{y}-1\right)}\)

    \(=\left[\frac{\left(\sqrt{y}-1\right)\left(y+\sqrt{y}+1\right)}{\sqrt{y}\left(\sqrt{y}-1\right)}-\frac{\left(\sqrt{y}+1\right)\left(y-\sqrt{y}+1\right)}{\sqrt{y}\left(\sqrt{y}+1\right)}\right].\frac{\sqrt{y}+1}{2\left(\sqrt{y}-1\right)}\)

    \(=\left(\frac{y+\sqrt{y}+1-y+\sqrt{y}-1}{\sqrt{y}}\right).\frac{\sqrt{y}+1}{2\left(\sqrt{y}-1\right)}\)

       \(=\frac{2\sqrt{y}}{\sqrt{y}}.\frac{\sqrt{y}+1}{2\left(\sqrt{y}-1\right)}=\frac{\sqrt{y}+1}{\sqrt{y}-1}\)

b/ \(A=\frac{\sqrt{y}+1}{\sqrt{y}-1}=1+\frac{2}{\sqrt{y}-1}\)

    Để \(A\in Z\Rightarrow\left(\sqrt{y}-1\right)\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

   Với \(\sqrt{y}-1=1\Rightarrow\sqrt{y}=2\Rightarrow y=4\)

   Với \(\sqrt{y}-1=-1\Rightarrow\sqrt{y}=0\Rightarrow y=0\)(loại)

   Với \(\sqrt{y}-1=2\Rightarrow\sqrt{y}=3\Rightarrow y=9\)

  Với \(\sqrt{y}-1=-2\Rightarrow\sqrt{y}=-1\) (loại)

      Vậy y = 4 , y = 9