Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)
\(P=\frac{x}{x+1}\)
b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)
Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)
Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó:
\(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)
c) P > 1 khi \(\frac{x}{x+1}>1\)
\(\Leftrightarrow1-\frac{1}{x+1}>1\)
\(\Leftrightarrow\frac{1}{x+1}< 0\)
\(\Leftrightarrow x< -1\)
e) Đề không rõ ràng
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{8}{x^2-1}\right):\left(\frac{1}{x-1}-\frac{7x+3}{1-x^2}\right)\)
\(A=\left[\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x+1\right)\left(x-1\right)}+\frac{8}{\left(x+1\right)\left(x-1\right)}\right]:\left[\frac{x+1}{\left(x+1\right)\left(x-1\right)}-\frac{3-7x}{\left(x+1\right)\left(x-1\right)}\right]\)
\(A=\left[\frac{x^2+2x+1-x^2+2x-1+8}{\left(x+1\right)\left(x-1\right)}\right]:\frac{x+1-3+7x}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{4x+8}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{8x-2}\)
......................
\(M=\frac{4x+8}{x^2-1}:\frac{x+2}{x+1}-\frac{x-2}{1-x}\) \(ĐKXĐ:x\ne\pm1\)
\(M=\frac{4\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{x+2}+\frac{x-2}{x-1}\)
\(M=\frac{4}{x-1}+\frac{x-2}{x-1}\)
\(M=\frac{4+x-2}{x-1}\)
\(M=\frac{x+2}{x-1}\)
vậy \(M=\frac{x+2}{x-1}\)
\(A=\left(\frac{x^2-16}{x-4}+1\right):\left(\frac{x-2}{x-3}+\frac{x+3}{x+1}+\frac{x+2-x^2}{x^2-2x-3}\right)\)
\(=\left(x+5\right):\left(\frac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}+\frac{x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)
\(=\left(x+5\right):\left(\frac{x^2+x-2x-2+x^2-9+x+2-x^2}{\left(x-3\right)\left(x+1\right)}\right)\)
\(=\left(x+5\right):\left(\frac{x^2-9}{\left(x-3\right)\left(x+1\right)}\right)\)
\(=\left(x+5\right):\left(\frac{x+3}{x+1}\right)=\frac{x+3}{\left(x+5\right)\left(x+1\right)}\)
ĐKXĐ:\(x\ne1\)
\(M=\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\)
\(M=\frac{x^2+2}{x^3-1}+\frac{\left(x+1\right)\left(x-1\right)-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(M=\frac{x^2+2}{x^3-1}+\frac{-x-2}{x^3-1}\)
\(M=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(M=\frac{x}{x^2+x+1}\)
\(M>\frac{1}{x-1}\Leftrightarrow\frac{x}{x^2+x+1}>\frac{1}{x-1}\)
\(\Leftrightarrow x^2-x>x^2+x+1\)
\(\Leftrightarrow2x+1< 0\)
\(\Leftrightarrow x< -\frac{1}{2}\) Với x nguyên.