Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm5\end{cases}}\)
\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\)
\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x+5\right)\left(x-5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{\left(x^2+10x+25\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)x}\)
\(\Leftrightarrow M=\frac{\left(x+5\right)^2}{x\left(x+5\right)}\)
\(\Leftrightarrow M=\frac{x+5}{x}\)
b) Để \(M\inℤ\)
\(\Leftrightarrow x+5⋮x\)
\(\Leftrightarrow5⋮x\)
\(\Leftrightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà \(x\ne\pm5\)
\(\Leftrightarrow x\in\left\{1;-1\right\}\)
Vậy để \(M\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)
\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\left(x\ne\pm5;x\ne0\right)\)
\(\Leftrightarrow M=\left(\frac{x}{x+5}+\frac{5}{x-5}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\left(\frac{x^2-5x}{\left(x-5\right)\left(x+5\right)}+\frac{5x+25}{\left(x-5\right)\left(x+5\right)}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{\left(x+5\right)^2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}=\frac{x+5}{x}\)
b) M là số nguyên thì x+5 chia hết cho x
=> 5 chia hết cho x
x nguyên => x thuộc Ư (5)={-5;-1;1;5}
Vậy x={-5;-1;1;5} thì M là số nguyên
a) \(ĐKXĐ:\hept{\begin{cases}x^3+1\ne0\\x^3-2x^2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne2\end{cases}}\)(chỗ chữ và là do OLM thiếu ngoặc 4 cái nên mk để thế nha! trình bày thì kẻ thêm 1 ngoặc nưax)
\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left[\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{4x-2x^2}{x+1}.\frac{1}{x\left(x-2\right)}\)
\(=1-\frac{2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b, Với \(x\ne0;x\ne-1;x\ne2\)Ta có:
\(|x-\frac{3}{4}|=\frac{5}{4}\)
*TH1:
\(x-\frac{3}{4}=\frac{5}{4}\Rightarrow x=2\)(ko thảo mãn)
*TH2:
\(x-\frac{3}{4}=-\frac{5}{4}\Rightarrow x=-\frac{1}{2}\)
\(\Rightarrow Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)
c,
\(Q=\frac{x-1}{x+1}=1-\frac{2}{x+1}\)
Để Q nguyên thì x+1 phải thuộc ước của 2!! tự làm tiếp dễ rồi!!
a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)
\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)
Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
Để A nhận giá trị nguyên thì x-3 chia hết chi x+1
=> (x+1)-4 chia hết chi x+1
=> 4 chia hết cho x+1
x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
ĐCĐK | tm | tm | tm | ktm | ktm | tm |
Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên
c) I3x-1I=5
\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)
Đên đây thay vào rồi tính nhé
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x-3}{x+1}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow x-3⋮x+1\)
\(\Leftrightarrow x+1-4⋮x+1\)
\(\Leftrightarrow4⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)
Mà \(x\ne0;x\ne1\)
\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
c) Khi \(\left|3x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên
Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)
a) \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\) (ĐKXĐ: \(x\ne\pm1\) )
\(=\left(\frac{x+1+2\left(1-x\right)-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{x+1+2-2x-5+x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\left(\frac{-2}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
\(=\frac{2}{x^2-1}.\frac{x^2-1}{1-2x}=\frac{2}{1-2x}\)
b) Để x nhận giá trị nguyên <=> 2 chia hết cho 1 - 2x
<=> 1-2x thuộc Ư(2) = {1;2;-1;-2}
Nếu 1-2x = 1 thì 2x = 0 => x= 0
Nếu 1-2x = 2 thì 2x = -1 => x = -1/2
Nếu 1-2x = -1 thì 2x = 2 => x =1
Nếu 1-2x = -2 thì 2x = 3 => x = 3/2
Vậy ....
a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)
b,
Để M = \(\frac{1}{3}\)
\(\Rightarrow x-4=3x+12\)
\(\Rightarrow2x=16\Leftrightarrow x=8\)
\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)
\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)
\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)
Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .
a,C=(1/(1-x)+2/(x+1)-(5-x)/(1-x2)):(1-2x)/(x2-1) ĐKXĐ:x khác -1 và 1
=((x+1+1-x)/(1-x2)-(5-x)/(1-x2):(1-2x)/(x2-1)
=(x-3)/(1-x2):(1-2x)/(x2-1)
=(3-x)(x2-1):(1-2x)/(x2-1)
=(3-x)/(1-2x)
b, Giá trị của B nguyên khi x=-2;0;1;3
a) ĐKXĐ: x∉{0;-5;5}
Ta có: \(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\)
\(=\left(\frac{x}{x+5}+\frac{5}{x-5}+\frac{10x}{x^2-25}\right)\cdot\frac{x-5}{x}\)
\(=\left(\frac{x\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)
\(=\frac{\left(x+5\right)^2}{\left(x+5\right)\left(x-5\right)}\cdot\frac{x-5}{x}\)
\(=\frac{x+5}{x-5}\cdot\frac{x-5}{x}=\frac{x+5}{x}\)
b) Đặt \(M=\frac{1}{20}x+1\)
⇒\(\frac{x+5}{x}=\frac{x}{20}+1\)
⇒\(\frac{20\left(x+5\right)}{20x}-\frac{x^2}{20x}-\frac{20x}{20x}=0\)
\(\Leftrightarrow20x+100-x^2-20x=0\)
⇔\(100-x^2=0\)
⇔\(\left(10-x\right)\left(10+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}10-x=0\\10+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=-10\left(tm\right)\end{matrix}\right.\)
Vậy: x∈{10;-10}
c) Để M là số nguyên thì x+5⋮x
mà x⋮x
nên 5⋮x
⇔x∈Ư(5)
⇔x∈{1;-1;5;-5}
mà x∉{5;-5}
nên x∈{1;-1}
Vậy: Khi x∈{1;-1} thì M là số nguyên
bạn chụp ảnh bài làm của bạn được không vậy?