Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))
=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)
Từ : x-y-z = 0
=>x – z = y; y – x = – z và y + z = x
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)
Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)
hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)
Ta có bảng:
x+3 | 1 | -1 | 2 | -2 |
x | -2 | -4 | -1 | -5 |
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)
Bài 3:
\(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
\(\frac{4}{5}x-2\ge\frac{1}{4}x+9\)
\(\Leftrightarrow\frac{11}{20}x\ge11\)
\(\Leftrightarrow11x\ge220\Leftrightarrow x\ge20\)