\(K=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}}{1-\sqrt{x}}-\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

a ,rút gọn P (dkxd x\(\ge0,x\ne0\)

P=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\dfrac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\dfrac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x-1}\right)}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

=\(\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{7\sqrt{x}-5x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

=\(\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

..............=\(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

a: ĐKXĐ: x>=0; x<>1

b: \(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

c: Để K=1/2 thì \(\dfrac{-5x+5\sqrt{x}-8}{x+2\sqrt{x}-3}=\dfrac{1}{2}\)

=>\(-10x+10\sqrt{x}-16-x-2\sqrt{x}+3=0\)

=>\(-11x+8\sqrt{x}-13=0\)

hay \(x\in\varnothing\)

13 tháng 7 2018

\(ĐKXĐ:x\ge0,x\ne1\)

\(K=\left[\dfrac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right]\)

\(K=\left[\dfrac{x+2\sqrt{x}+\sqrt{x}+2}{x+2\sqrt{x}-\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{\sqrt{x}-1+\sqrt{x}+1}{x-1}\right]\)

\(K=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\left[\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}-\dfrac{x+\sqrt{x}}{x-1}\right]:\dfrac{2\sqrt{x}}{x-1}\)

\(K=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)

\(K=\dfrac{\sqrt{x}+1}{x-1}.\dfrac{x-1}{2\sqrt{x}}\)

\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

b.

Ta có: \(24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}}\)

\(=24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=24+\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=24+\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=24+\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=24+\sqrt{\sqrt{5}-\sqrt{5}+1}=24+1=25\)

Thay \(x=25\) vào \(K\) ta được:

\(K=\dfrac{\sqrt{x}+1}{2\sqrt{x}}=\dfrac{\sqrt{25}+1}{2.\sqrt{25}}=\dfrac{6}{10}=\dfrac{3}{5}\)

c.

Ta có: \(\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}\ge1\)

\(\Rightarrow\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{8}-1\ge0\)

\(\Rightarrow\dfrac{16\sqrt{x}}{8\sqrt{x}+8}-\dfrac{x+2\sqrt{x}+1}{8\sqrt{x}+8}-\dfrac{8\sqrt{x}+8}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{16\sqrt{x}-x-2\sqrt{x}-1-8\sqrt{x}-8}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{6\sqrt{x}-x-9}{8\sqrt{x}+8}\ge0\)

\(\Rightarrow\dfrac{-\left(\sqrt{x}-3\right)^2}{8\sqrt{x}+8}\ge0\)

Ta có: \(\left\{{}\begin{matrix}-\left(\sqrt{x}-3\right)^2\le0\\8\sqrt{x}+8\ge0\end{matrix}\right.\)

⇒ Không có \(x\) thỏa mãn

10 tháng 8 2018

\(a.K=\left(\dfrac{\sqrt{x}+2}{3\sqrt{x}}+\dfrac{2}{\sqrt{x}+1}-3\right):\dfrac{2-4\sqrt{x}}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)+6\sqrt{x}-9\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2\left(1-2\sqrt{x}\right)}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{2\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}{3\sqrt{x}}.\dfrac{1}{2\left(1-2\sqrt{x}\right)}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{x-\sqrt{x}}{3\sqrt{x}}=\dfrac{\sqrt{x}-1}{3}\) \(b.x=\dfrac{1}{4}\left(KTMĐKXĐ\right)\) nên tại \(x=\dfrac{1}{4}\) giá trị của K không xác định .

\(c.K< 1\)\(\dfrac{\sqrt{x}-1}{3}< 1\)

\(\sqrt{x}-1< 3\text{⇔}x< 16\)

Kết hợp với ĐKXĐ : \(0< x< 16\) ( x # \(\dfrac{1}{4}\) )

\(d.Để:\) K ∈ Z ⇔ \(\sqrt{x}-1\text{∈}\left\{1;-1;3;-3\right\}\)

+) \(\sqrt{x}-1=1\text{⇔ }x=4\left(TM\right)\)

+) \(\sqrt{x}-1=-1\text{⇔ }x=0\left(KTM\right)\)

+) \(\sqrt{x}-1=3\text{⇔ }x=16\left(TM\right)\)

+) \(\sqrt{x}-1=-3\text{⇔ }vô-nghiem\)

KL...............

1 tháng 8 2018

1 , ĐKXĐ : \(x\ge0,x\ne1\)

Với điều kiện xác định trên phương trình đã cho thánh :

\(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}+\dfrac{x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1-2\left(\sqrt{x}+1\right)+x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

24 tháng 2 2019

\(Q= \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}\\\)
\(Q = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\ Q = \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\ Q = \dfrac{{ - \sqrt x + x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\)

Bài 2:

a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)

b: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\)

\(\Leftrightarrow-10\sqrt{x}+2=\sqrt{x}+3\)

hay \(x\in\varnothing\)

a: \(K=\dfrac{\sqrt{x}-11-3x-9\sqrt{x}-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x-8\sqrt{x}-11-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x-9\sqrt{x}-8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

b: Để K=1/2 thì \(\dfrac{-5x-9\sqrt{x}-8}{x+2\sqrt{x}-3}=\dfrac{1}{2}\)

=>\(-10x-18\sqrt{x}-16=x+2\sqrt{x}-3\)

=>-11x-20căn x+13=0

=>\(x=\left(\dfrac{-10+9\sqrt{3}}{11}\right)^2\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

ĐK: \(x>0; x\neq 4\)

Có: \(K=\left(\frac{4\sqrt{x}(2-\sqrt{x})}{(2+\sqrt{x})(2-\sqrt{x})}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-2)}-\frac{2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\right)\)

\(=\frac{8\sqrt{x}-4x+8x}{(2+\sqrt{x})(2-\sqrt{x})}: \frac{\sqrt{x}-1-2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\)

\(=\frac{8\sqrt{x}+4x}{(2+\sqrt{x})(2-\sqrt{x})}.\frac{\sqrt{x}(\sqrt{x}-2)}{-\sqrt{x}+3}\)

\(=\frac{4\sqrt{x}(2+\sqrt{x})}{2+\sqrt{x}}. \frac{-\sqrt{x}}{3-\sqrt{x}}=\frac{-4\sqrt{x}.\sqrt{x}}{3-\sqrt{x}}=\frac{4x}{\sqrt{x}-3}\)

b)

\(K=-1\Leftrightarrow \frac{4x}{\sqrt{x}-3}=-1\Rightarrow 4x=-(\sqrt{x}-3)\)

\(\Leftrightarrow 4x+\sqrt{x}-3=0\)

\(\Leftrightarrow (4\sqrt{x}-3)(\sqrt{x}+1)=0\)

\(\sqrt{x}+1>0\Rightarrow 4\sqrt{x}-3=0\Rightarrow x=\frac{9}{16}\)

c) \(m(\sqrt{x}-3)K>x+1\)

\(\Leftrightarrow m. (\sqrt{x}-3).\frac{4x}{\sqrt{x}-3}>x+1\)

\(\Leftrightarrow m> \frac{x+1}{4x}\)

\(\Leftrightarrow m> max(\frac{4x}{x+1}), \forall x< 9\)

Với đk đã cho thì ta thấy \(\frac{4x}{x+1}\) có min thôi.

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)