Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.a\ne\pm1\)
\(b.K=\dfrac{1}{a+1}+\dfrac{2}{a^2-1}=\dfrac{a-1}{\left(a-1\right)\left(a+1\right)}+\dfrac{2}{\left(a-1\right)\left(a+1\right)}=\dfrac{a+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{1}{a-1}\)
\(c.K=\dfrac{1}{1-\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\)
\(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right)=\frac{a^2-1}{a^2-a}=\frac{a+1}{a}\)
ở phàn a+/a thiếu số 1 nhé
\(\frac{1}{a+1}+\frac{2}{a^2-1}=\frac{a-1+2}{a^2-1}=\frac{1}{a-1}\)
=> K =\(\frac{a^2-1}{a}\)
đkxđ: a khác +-1
b, thay vào mà tình
a/ \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)
\(=\frac{a^2-1}{a\left(a-1\right)}:\frac{a-1+2}{\left(a-1\right)\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}.\frac{\left(a-1\right)\left(a+1\right)}{a-1}\)
\(=\frac{a+1}{a}.a+1\)
\(=\frac{\left(a+1\right)^2}{a}\)
b, Thay a=1/2
\(\Rightarrow\frac{\left(\frac{1}{2}+1\right)^2}{\frac{1}{2}}=\frac{\frac{9}{4}}{\frac{1}{2}}=\frac{9}{2}\)
a) a ≠ 0 , a ≠ − 5
b) Ta có A = a 3 + 4 a 2 − 5 a 2 a ( a + 5 ) = a ( a − 1 ) ( a + 5 ) 2 a ( a + 5 ) = a − 1 2
c) Thay a = -1 (TMĐK) vào a ta được A = -1
d) Ta có A = 0 Û a = 1 (TMĐK)
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
đkxđ:\(x\ne5,x\ne-5\)
\(\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5}{x-5}-\dfrac{1}{x+5}\)
\(\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5x+25}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(\dfrac{2x-5x-25-x+5}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=-\dfrac{4}{x-5}\)
thay x=1 vào bt A, ta được:
\(-\dfrac{4}{1-5}=1\)
a. ĐKXĐ: \(x\ne\pm1\)
b. \(A=\left(x^2-1\right)\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{x+1-x+1-\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\left(x-1\right)\left(x+1\right)\left[\dfrac{-x^2+3}{\left(x-1\right)\left(x+1\right)}\right]\)
\(=\dfrac{\left(x-1\right)\left(x+1\right)\left(-x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=-x^2+3\)
c. Thay x = 3 vào A ta được:
\(-\left(3\right)^2+3=-6\)
Vậy: Giá trị của A tại x = 3 là -6
a) ĐKXĐ: \(x\ne1;x\ne-1.\)
b) \(A=\left(x^2-1\right).\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right).\)
\(=\left(x^2-1\right).\dfrac{x+1-x+1-x^2+1}{x^2-1}=-x^2+3.\)
c) Thay x = 3 (TMĐK) vào A: \(-3^2+3=-6.\)
a,ĐK : \(a\ne\pm1\)
\(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)
\(=\left(\frac{a^2}{a\left(a-1\right)}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{a-1}{\left(a+1\right)\left(a-1\right)}+\frac{2}{\left(a+1\right)\left(a-1\right)}\right)\)
\(=\left(\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}\right):\left(\frac{a+1}{\left(a+1\right)\left(a-1\right)}\right)\)
\(=\frac{a+1}{a}.\frac{a-1}{1}=\frac{a^2-1}{a}\)
b, Thay a = 1/2 ta được :
\(K=\frac{\left(\frac{1}{2}\right)^2-1}{\frac{1}{2}}=\frac{\frac{1}{4}-1}{\frac{1}{2}}=\frac{-\frac{3}{4}}{\frac{1}{2}}=-\frac{3}{8}\)