Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a=xy=-60
b: y=-60/x
Khi x=10 thì y=-60/10=-6
Khi x=-2/3thì y=-60:(-2/3)=90
c: x=-60/y
Khi y=-7/2 thì x=-60:(-7/2)=60*2/7=120/7
Khi y=21 thì x=-60/21=-20/7
a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)
Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)
Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)
b: Để M=6 thì \(3-\left(x-1\right)^2=6\)
\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)
c: \(M=-\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)
Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)
Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)
b, Để M=6 thì:
\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)
c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\Rightarrow M=3-\left(x-1\right)^2\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy \(M_{max}=3\Leftrightarrow x=1\)
\(a,a=xy=-10.12=-120\\ b,y=-\dfrac{120}{x}\\ c,y=-1\Rightarrow x=-\dfrac{120}{y}=120\\ d,x=6\Rightarrow y=-\dfrac{120}{6}=-20\)
a) x và y tỉ lệ nghịch với nhau
-->y=\(\dfrac ax\)
thay x =-10 thì y =12,ta cố
a=-120
b) y=-120/x
c) với y=-1
-->x=120
d) với x=6
-->y=-20
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức : \(3\)
Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)
b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)
\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)
a: Thay x=1; y=-1 và z=-2 vào biểu thức \(2xy\left(5x^2y+3x-z\right)\), ta được:
\(2\cdot1\cdot\left(-1\right)\cdot\left(-5+3+2\right)\)
=0
b: Thay x=1; y=-1 và z=-2 vào biểu thức \(xy^2+y^2z^3+z^3x^4\), ta được:
\(1\cdot\left(-1\right)^2+\left(-1\right)^2\cdot\left(-8\right)+\left(-8\right)\cdot1\)
\(=1-8-8=-15\)
\(\text{Thay x=}\dfrac{-1}{2};y=-1\text{ vào biểu thức B,ta có:}\)
\(B=4.\left(\dfrac{-1}{2}\right)^3+\left(\dfrac{-1}{2}\right).\left(-1\right)^2\)
\(B=4.\left(\dfrac{-1}{8}\right)+\left(\dfrac{-1}{2}\right).1\)
\(B=\left(\dfrac{-1}{2}\right)+\left(\dfrac{-1}{2}\right)\)
\(B=\left(\dfrac{-2}{2}\right)=-1\)
\(\text{Vậy giá trị của biểu thức B tại }x=\dfrac{-1}{2};y=-1\text{ là:}-1\)