Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc đề em gõ bị lỗi nhỏ :) Cô sẽ sửa nhé :)
a. ĐK: \(a\ge0,a\ne4\)
\(H=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{a+\sqrt{a}-6}=\frac{a-4-4-\sqrt{a}-3}{a+\sqrt{a}-6}\)
\(=\frac{a-\sqrt{a}-12}{a+\sqrt{a}-6}=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)
b. \(H< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}-2< 0\Leftrightarrow\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}< 0\)
\(\Leftrightarrow\frac{-\sqrt{a}}{\sqrt{a}-2}< 0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow x>4\)
Tương tự với các câu còn lại nhé :)
1/
a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)
b/ \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)
\(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)
Vậy x = 9/25 , x = 4
1) a) ĐKXĐ : \(0\le x\ne\frac{1}{9}\)
b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)
ĐKXĐ: \(x\ge0;a\ne4\)
\(H=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\frac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\frac{\sqrt{a}+3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)
\(H< 2\Rightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\Rightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}-2< 0\)
\(\Rightarrow\frac{\sqrt{a}-4-2\left(\sqrt{a}-2\right)}{\sqrt{a}-2}< 0\Rightarrow\frac{-\sqrt{a}}{\sqrt{a}-2}< 0\)
\(\Rightarrow\frac{\sqrt{a}}{\sqrt{a}-2}>0\Rightarrow\sqrt{a}-2>0\Rightarrow a>4\)
\(a^2+3a=0\Rightarrow a\left(a+3\right)=0\Rightarrow a=0\) (do \(a\ge0\Rightarrow a+3>0\))
\(\Rightarrow H=\frac{0-4}{0-2}=2\)
\(H=5\Rightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}=5\Rightarrow\sqrt{a}-4=5\sqrt{a}-10\)
\(\Rightarrow4\sqrt{a}=6\Rightarrow\sqrt{a}=\frac{3}{2}\Rightarrow a=\frac{9}{4}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(A=\)\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{\sqrt{a}.\sqrt{a}}{2\sqrt{a}}-\frac{1}{2\sqrt{a}}\right)^2\)\(\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}\left(\frac{a-2\sqrt{a}+1-a-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2.-4\sqrt{a}}{4a\left(a-1\right)}=\frac{a-1}{\sqrt{a}}\)
\(b,A< 0\Rightarrow\frac{a-1}{\sqrt{a}}< 0\)
Mà \(\sqrt{a}\ge0\Rightarrow a-1\le0\Rightarrow a\le1\)
\(A=2\Rightarrow\frac{a-1}{\sqrt{a}}=2\)
\(\Rightarrow a-1=2\sqrt{a}\Rightarrow a-2\sqrt{a}-1=0\)
\(\Rightarrow a-2\sqrt{a}+1-2=0\)
\(\Rightarrow\left(\sqrt{a}-1\right)^2-\sqrt{2}^2=0\)
\(\Rightarrow\left(\sqrt{a}-1-\sqrt{2}\right)\left(\sqrt{a}-1+\sqrt{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=1+\sqrt{2}\\\sqrt{a}=1-\sqrt{2}\end{cases}\Rightarrow\orbr{\begin{cases}a=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\\a=\left(1-\sqrt{2}\right)^2=3-2\sqrt{2}\end{cases}}}\)
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(a-1\right)^2}{4a}.\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{a-1}\)
\(=\frac{a-1}{4a}.\frac{2\sqrt{a}.\left(-2\right)}{1}\)
\(=\frac{a-1}{4a}.\frac{-4\sqrt{a}.}{1}\)
\(=\frac{1-a}{\sqrt{a}}\)
a/ Điều kiện \(\hept{\begin{cases}a\ge0\\a\ne\frac{1}{9}\end{cases}}\) \(\Rightarrow0\le a\ne\frac{1}{9}\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(a-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(1-3\sqrt{a}\right)+\left(\sqrt{a}-2\right)\left(1+3\sqrt{a}\right)+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}:\left(\frac{3a\sqrt{a}-2\sqrt{a}+6-a}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}-6a+\sqrt{a}+3a-2-6\sqrt{a}+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}.\left(\frac{3\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\right)\)
\(=\frac{3a-2\sqrt{a}-1}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
Hình như đề sai rồi bạn :(
a/ Điều kiện xác định : \(\hept{\begin{cases}a\ge0\\a\ne9\end{cases}\Leftrightarrow}0\le a\ne9\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(1-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(3\sqrt{a}-1\right)+\left(2-\sqrt{a}\right)\left(3\sqrt{a}+1\right)-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}:\frac{\sqrt{a}+5}{3\sqrt{a}-1}\)
\(=\frac{6a-2\sqrt{a}+6\sqrt{a}+2-3a-\sqrt{a}-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}.\frac{3\sqrt{a}-1}{\sqrt{a}+5}\)
\(=\frac{3a-2\sqrt{a}-1}{3\sqrt{a}+1}.\frac{1}{\sqrt{a}+5}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(3\sqrt{a}+1\right)\left(\sqrt{a}+5\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+5}\)
c/ \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\) thay vào M được
\(\frac{\sqrt{5}-2-1}{\sqrt{5}-2+5}=\frac{\sqrt{5}-3}{\sqrt{5}+3}=\frac{-7+3\sqrt{5}}{2}\)
d/ \(M=\frac{\sqrt{a}-1}{\sqrt{a}+5}=\frac{\sqrt{a}+5-6}{\sqrt{a}+5}=1-\frac{6}{\sqrt{a}+5}\)
Với mọi \(0\le a\ne9\) thì ta luôn có \(\sqrt{a}+5\ge5\Leftrightarrow\frac{6}{\sqrt{a}+5}\le\frac{6}{5}\Leftrightarrow-\frac{6}{\sqrt{a}+5}\ge-\frac{6}{5}\Leftrightarrow1-\frac{6}{\sqrt{a}+5}\ge1-\frac{6}{5}\)
\(\Rightarrow M\ge-\frac{1}{5}\)
Đẳng thức xảy ra khi a = 0
Vậy giá trị nhỏ nhất của M bằng \(-\frac{1}{5}\) khi a = 0
a. ĐKXĐ : \(a\ge0;a\ne1;a\ne4;a\ne9\)
\(C=-\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}-1}-\frac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)}{\sqrt{a}-2}+\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\)
\(=-\sqrt{a}-1-a-2\sqrt{a}-4+\sqrt{a}-2\)
\(=-a-2\sqrt{a}-7\)
b. \(C=-a-2\sqrt{a}-7\le-7\)
\(\text{Dấu }=\text{xảy ra }\Leftrightarrow a=0\)
c. \(a^2-3a=0\)
\(\Leftrightarrow a\left(a-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}C=-7\\C=-10-2\sqrt{3}\end{matrix}\right.\)
d. \(C=-13\)
\(\Leftrightarrow-a-2\sqrt{a}-7=-13\)
\(\Leftrightarrow a+2\sqrt{a}-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-1+\sqrt{7}\left(TM\right)\\a=-1-\sqrt{7}\left(\text{loại}\right)\end{matrix}\right.\)
\(\Leftrightarrow a=-1+\sqrt{7}\)