K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

Bài 1:

a) Bn ơi bài như thế này ta thường tách các số giữa , cuối để đem về số chính phương nhé:

\(B=x^2-2x+10=x^2-x-x+1+9=x.\left(x-1\right)-\left(x-1\right).1+9=\left(x-1\right)^2+9\)

lớn hơn hoặc bằng 9 vs mọi x

=>B luôn dương

b) Theo câu a ,ta có:

B luôn lớn hơn hoặc bằng 9 với mọi x

Dấu "=" xảy ra <=> B=9 tức là Min B=9

B=9=>\(\left(x-1\right)^2+9=9\)

=>\(\left(x-1\right)^2=0\)

=> x-1 =0

=> x=1

Vậy Min B=9 <=> x=1

22 tháng 6 2017

Bài 2:

Giải theo cách : tích trung tỉ bằng tích ngoại tỉ

Ta có: \(\dfrac{x-3}{x+5}=\dfrac{5}{7}=>7x-21=5x+25=>7x-5x=25+21=46=>x=23\)

Vậy x=23

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)

 

20 tháng 11 2017

a) Ta có: \(\left(2x+\frac{1}{4}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{4}\right)^4+6\ge6\)

Dấu "=" xảy ra khi \(2x+\frac{1}{4}=0\Rightarrow2x=\frac{-1}{4}\Rightarrow x=\frac{-1}{8}\)

Vậy Emin = 6 \(\Leftrightarrow x=\frac{-1}{8}\)

b) Ta có: \(\left(5-3x\right)^2\ge0\Rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu "=" xảy ra khi \(5-3x=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)

Vậy Emin = -2013 \(\Leftrightarrow x=\frac{5}{3}\)

Mấy bài còn lại làm tương tự.

20 tháng 11 2017

6

-2013

2013

-1

2014

2016

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

1, Tính tổng S= \(\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{7}{8}+\dfrac{15}{16}+\dfrac{31}{32}+\dfrac{63}{64}+\dfrac{127}{128}-6\) 2, Tìm x,y,z biết: a) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{10}\)và xy+yz+zx=1206 b) \(\dfrac{x}{4}=\dfrac{2y}{5}=\dfrac{5z}{6}\)và x2 - 3y2 + 2z2 = 325 3, Cho biểu thức M= \(\dfrac{5x+2y+z}{x+4y-3z}\)trong đó x,y,z tỉ lệ với các số 2,3,4. Tính giá trị của M. 4, Cho số a= \(\left(\dfrac{56}{55}-1,01\right)^{50}\).Chứng minh rằng nếu...
Đọc tiếp

1, Tính tổng S= \(\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{7}{8}+\dfrac{15}{16}+\dfrac{31}{32}+\dfrac{63}{64}+\dfrac{127}{128}-6\)

2, Tìm x,y,z biết:

a) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{10}\)và xy+yz+zx=1206

b) \(\dfrac{x}{4}=\dfrac{2y}{5}=\dfrac{5z}{6}\)và x2 - 3y2 + 2z2 = 325

3, Cho biểu thức M= \(\dfrac{5x+2y+z}{x+4y-3z}\)trong đó x,y,z tỉ lệ với các số 2,3,4. Tính giá trị của M.

4, Cho số a= \(\left(\dfrac{56}{55}-1,01\right)^{50}\).Chứng minh rằng nếu viết số a dưới dạng số thập phân thì số a sẽ có ít nhất là 99 chữ số 0 đầu tiên sau dấu phẩy.

5, Tìm các giá trị của x và y để:

a) Biểu thức A= \(\left(x-\dfrac{5}{6}\right)^2+\left(xy-\dfrac{1}{4}\right)^4-85\) đạt giá trị nhỏ nhất.

b) Biểu thức B= -5(3x+2)4 + [-(x+2y)2]5 +111 đạt giá trị lớn nhất.

Mong các bn giúp mình, cám ơn nhìu...!

1

Bài 3: 

Vì x,y,z tỉ lệ với 2;3;4 nên x/2=y/3=z/4

Đặt x/2=y/3=z/4=k

=>x=2k; y=3k; z=4k

\(M=\dfrac{5x+2y+z}{x+4y-3z}=\dfrac{10k+6k+4k}{2k+12k-12k}=10\)

a: \(=\left(\dfrac{-1}{3}:\dfrac{-2}{3}\right)^3+\left(\dfrac{4}{21}\cdot\dfrac{21}{4}\right)^{50}+0.01\)

\(=\left(\dfrac{1}{2}\right)^3+1^{50}+0.01=0.125+1+0.01=1.135\)

b: \(=x:y+\left(\dfrac{2x}{y}\right)^2-11x+12x-12y\)

\(=\dfrac{x}{y}+\dfrac{4x^2}{y^2}+x-12y\)

\(=\dfrac{x^2+4x^2+xy^2-12y^3}{y^2}=\dfrac{5x^2+xy^2-12y^3}{y^2}\)

7 tháng 6 2017

1.

a, Để \(\dfrac{x+1}{x^2-2}\) có nghĩa \(\Leftrightarrow x^2-2\ne0\Leftrightarrow x^2\ne2\Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{2}\\x\ne-\sqrt{2}\end{matrix}\right.\)

b, Để \(\dfrac{x-1}{x^2+1}\)có nghĩa \(\Leftrightarrow x^2+1\ne0\Leftrightarrow x^2\ne-1\)

\(x^2\ge0\forall x\in R\).

Vậy biểu thức trên luôn luôn có nghĩa.

c, Để \(\dfrac{ax+by+c}{xy-3y}cónghĩa\Leftrightarrow xy-3y=y\left(x-3\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\).