Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
\(a.\dfrac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\dfrac{1}{x-1}\right)=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\dfrac{x-2}{x-1}=\dfrac{\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|}{\left|x-2\right|}.\dfrac{x-2}{x-1}\left(x>1\right)\)
Tới đây dễ r , bạn tự chia TH ra làm nhé :D
\(b.\dfrac{1}{\sqrt{x}+\sqrt{x-1}}-\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{\sqrt{x^3}-x}{1-\sqrt{x}}=\dfrac{\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}+\dfrac{x\sqrt{x}-x}{\sqrt{x}-1}=-2\sqrt{x-1}+x\left(x\ge1\right)\)
Bạn ơi câu a có vẻ có vấn đề ý. Nếu bạn áp dụng HĐT thì phải là√(x-2)2 chứ nhỉ. Mong bạn giải đáp
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
bài 2 ) a) đk : \(a>0;b>0\)
b) P = \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
P = \(\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
P = \(\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}.\sqrt{a}-\sqrt{b}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}.\sqrt{a}-\sqrt{b}\) = \(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\) = \(a-b\)
c) ta có P = \(a-b\) thay \(a=2\sqrt{3};b=\sqrt{3}\) vào ta có
P = \(2\sqrt{3}-\sqrt{3}=\sqrt{3}\) vậy khi \(a=2\sqrt{3};b=\sqrt{3}\) thì P = \(\sqrt{3}\)
bài 1) a) P = \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
P = \(\dfrac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{a-1}{\sqrt{a}}.\dfrac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
P = \(\dfrac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{a-1}{\sqrt{a}}.\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)
P = \(\dfrac{a^2\sqrt{a}+a^2-a-\sqrt{a}-a^2\sqrt{a}+a^2-a+\sqrt{a}}{\left(a+\sqrt{a}\right)\left(a-\sqrt{a}\right)}+\dfrac{2a+2}{\sqrt{a}}\)
P = \(\dfrac{2a^2-2a}{a^2-a}+\dfrac{2a+1}{\sqrt{a}}\) = \(\dfrac{2\left(a^2-a\right)}{a^2-a}+\dfrac{2a+2}{\sqrt{a}}\)
P = \(2+\dfrac{2a+2}{\sqrt{a}}\) = \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)
b) ta có P = 7 \(\Leftrightarrow\) \(\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}=7\) \(\Leftrightarrow\) \(2a+2\sqrt{a}+2=7\sqrt{a}\)
\(\Leftrightarrow\) \(2a-5\sqrt{a}+2=0\) (1)
đặc \(\sqrt{a}=u\) \(\left(u\ge0\right)\) (1) \(\Leftrightarrow\) \(2u^2-5u+2\)
\(\Delta=\left(-5\right)^2-4.2.2\) = \(25-16=9>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(u_1=\dfrac{5+3}{4}=\dfrac{8}{4}=2\left(tmđk\right)\)
\(u_2=\dfrac{5-3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\left(tmđk\right)\)
ta có : \(u=\sqrt{a}=2\Leftrightarrow x=4\)
\(u=\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)
vậy \(a=4;a=\dfrac{1}{4}\) thì P = 7
1. b) \(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\left(x\sqrt{\dfrac{6x}{x^2}}+\sqrt{\dfrac{6x}{9}}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\left(\sqrt{6x}+\dfrac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\dfrac{7}{3}\sqrt{6x}:\sqrt{6x}=\dfrac{7}{3}\)
2.
P=\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)(bn có ghi sai đề ko)
a) ĐKXĐ : \(x\ge1,x\ge2,x\ge0\)
b) P=\(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{x-3\sqrt{x}-\sqrt{x}+3-2x+\sqrt{x}+4\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
c) thay x= \(4-2\sqrt{3}\)vào P ta có :
\(\dfrac{1}{\sqrt{4-2\sqrt{3}}-2}=\dfrac{1}{\sqrt{3}-1-2}=\dfrac{1}{\sqrt{3}-3}\)
a: \(P=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
c: Để \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) là số nguyên thì \(\sqrt{x}+1-2⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;2\right\}\)
=>x=0
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)
ĐKXĐ \(x>0,x\ne1\)
pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)
b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)
Vì \(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)
mà \(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)
Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)
(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)
a) ĐKXĐ : \(x\sqrt{x}-1\ge0\Leftrightarrow x\ge1\)
b) \(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\left(x-2\sqrt{x}+1\right)\)
\(=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)
c) Có : \(x=\dfrac{2-\sqrt{3}}{2}=\dfrac{4-2\sqrt{3}}{4}=\dfrac{\left(\sqrt{3}-1\right)^2}{4}\)
Khi đó B = \(\dfrac{\sqrt{3}-1}{2}-1=\dfrac{\sqrt{3}-3}{2}\)
\(a,\) B có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(b,B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{1+x\sqrt{x}-\sqrt{x}-x}{1+\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(x-1\right)-\left(x-1\right)}{1+\sqrt{x}}\)
\(=\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\sqrt{x}-1\)
\(c,x=\dfrac{2-\sqrt{3}}{2}\Rightarrow B=\sqrt{\dfrac{2-\sqrt{3}}{2}}-1\)
\(=\dfrac{\sqrt{2}.\sqrt{2-\sqrt{3}}}{\sqrt{2}.\sqrt{2}}-\sqrt{2}\) (Nhân \(\sqrt{2}\) để khử căn dưới mẫu)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-2\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-2\sqrt{2}}{2}\)
\(=\dfrac{\left|\sqrt{3}-1\right|-2\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{3}-1-2\sqrt{2}}{2}\)