Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)
b) Với \(a>0;a\ne1;a\ne4\), ta có:
\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).
a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
b) Ta có: \(M=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\dfrac{a-1}{2\sqrt{a}}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{\sqrt{a}\left[\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2\right]}{2\sqrt{a}}\)
\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}\)
\(=\dfrac{-4\sqrt{a}}{2}=-2\sqrt{a}\)
c) Để M=-4 thì \(-2\sqrt{a}=-4\)
\(\Leftrightarrow\sqrt{a}=2\)
hay a=4(thỏa ĐK)
Sửa đề: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{1;4\right\}\end{matrix}\right.\)
Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a+3\sqrt{a}+2-a+3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{6\sqrt{a}}\)
\(=\dfrac{a-4}{6a\left(\sqrt{a}-1\right)}\)
c) Thay \(a=9-4\sqrt{5}\) vào Q, ta được:
\(Q=\dfrac{5-4\sqrt{5}}{6\left(9-4\sqrt{5}\right)\left(\sqrt{5}-3\right)}\)
\(=\dfrac{5-4\sqrt{5}}{6\left(9\sqrt{5}-27-20+12\sqrt{5}\right)}\)
\(=\dfrac{5-4\sqrt{5}}{6\left(21\sqrt{5}-47\right)}\)
\(=\dfrac{\left(5-4\sqrt{5}\right)\left(21\sqrt{5}+47\right)}{-24}\)
\(=\dfrac{105\sqrt{5}+235-420-188\sqrt{5}}{-24}\)
\(=\dfrac{-83\sqrt{5}-185}{-24}=\dfrac{83\sqrt{5}+185}{24}\)
a,\(ĐK:x>0,x\ne1,x\ne4\)
\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)
Thay \(x=1\) vào \(A\), ta được:
\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a< >1\end{matrix}\right.\)
\(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\left(\dfrac{3\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}+1}\right)\)
\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{a-1}\)
\(=\dfrac{a+\sqrt{a}+1-\left(a-\sqrt{a}+1\right)}{\sqrt{a}}+\dfrac{3a+3\sqrt{a}-a-\sqrt{a}+2}{\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}+2a+2\sqrt{a}+2}{\sqrt{a}}=\dfrac{2\left(\sqrt{a}+1\right)^2}{\sqrt{a}}\)
b: \(P=\sqrt{a}+7\)
=>\(2\left(a+2\sqrt{a}+1\right)=a+7\sqrt{a}\)
=>\(2a+4\sqrt{a}+2-a-7\sqrt{a}=0\)
=>\(a-3\sqrt{a}+2=0\)
=>\(\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\)
=>\(\left[{}\begin{matrix}a=1\left(loại\right)\\a=4\left(nhận\right)\end{matrix}\right.\)
c: \(P-6=\dfrac{2\left(\sqrt{a}+1\right)^2-6\sqrt{a}}{\sqrt{a}}\)
\(=\dfrac{2a+4\sqrt{a}+2-6\sqrt{a}}{\sqrt{a}}=\dfrac{2a-2\sqrt{a}+2}{\sqrt{a}}\)
\(=\dfrac{2\left(a-\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}\right)}{\sqrt{a}}=\dfrac{2\left[\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}{\sqrt{a}}>0\)
=>P>6
a: ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a\ne1\end{matrix}\right.\)
b: Sửa đề: \(C=\left[1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)\right]\cdot\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)
\(=\left[1:\dfrac{a+\sqrt{1}-\sqrt{a}}{\sqrt{a}+1}\right]\cdot\left[\dfrac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right]\)
\(=\dfrac{\sqrt{a}+1}{1}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)
\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a+1}=\dfrac{a-1}{a+1}\)
c: Để C là số nguyên thì \(a-1⋮a+1\)
=>\(a+1-2⋮a+1\)
=>\(-2⋮a+1\)
=>\(a+1\in\left\{1;-1;2;-2\right\}\)
=>\(a\in\left\{0;-2;1;-3\right\}\)
Kết hợp ĐKXĐ, ta được: a=0
Lời giải:
a. ĐKXĐ: $x>1$
\(B=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=\frac{(\sqrt{x+1}+\sqrt{x-1})^2}{2}=x+\sqrt{x^2-1}\)
b.
\(B=\frac{a^2+b^2}{2ab}+\sqrt{\frac{a^2+2ab+b^2}{2ab}.\frac{a^2-2ab+b^2}{2ab}}\)
\(=\frac{a^2+b^2}{2ab}+\sqrt{\frac{(a+b)^2(a-b)^2}{(2ab)^2}}=\frac{a^2+b^2}{2ab}+\frac{|a-b||a+b|}{|2ab|}=\frac{a^2+b^2}{2ab}+\frac{a^2-b^2}{2ab}=\frac{a}{b}\)
c.
$B\leq 1\Leftrightarrow (x-1)+\sqrt{x^2-1}\leq 0$
$\Leftrightarrow \sqrt{x-1}(\sqrt{x-1}+\sqrt{x+1})\leq 0$
$\Leftrightarrow \sqrt{x-1}\leq 0$
Mà $\sqrt{x-1}>0$ với mọi $x<1$ nên điều này vô lý)
Vậy không tồn tại $x$ thỏa đkđb
d.
$B=2\Leftrightarrow x+\sqrt{x^2-1}=2$
$\Leftrightarrow \sqrt{x^2-1}=2-x$
\(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ x^2-1=(2-x)^2=x^2-4x+4\end{matrix}\right.\)
\(\Rightarrow x=\frac{5}{4}\)
Thử lại thấy thỏa mãn
Vậy......
ĐKXĐ: \(x\ge0;x\ne1\)
Ta có: \(A=\left(2+\dfrac{2x+\sqrt{x}}{2\sqrt{x}+1}\right)\left(2-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(A=\left(2+\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{2\sqrt{x}+1}\right)\left(2-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(A=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)=4-x\)
a, ĐKXĐ:
\(\left\{{}\begin{matrix}\left|a\right|>1^2\\\left|a\right|>0\\\left|a\right|>2^2\end{matrix}\right.\Leftrightarrow a>4\)
b,
\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ B=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left[\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)\right]}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\\ B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
\(c,B\le\dfrac{1}{3}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\\ \Leftrightarrow3\left(\sqrt{a}-2\right)\le3\sqrt{a}\\ \Leftrightarrow\sqrt{a}-2\le\sqrt{a}\\ \Leftrightarrow\sqrt{a}-\sqrt{a}\le2\\ \Leftrightarrow0\le2\left(luôn.đúng\right)\)
Vậy: Với a>4 thì \(B\le\dfrac{1}{3}\)