Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
b) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
d) Để A>0 thì \(\sqrt{x}-2>0\)
hay x>4
Đề đúng nhỉ ,bạn xem lại đề dùm mình ạ \(\sqrt[]{}\)X -2 hay là \(\sqrt[]{^{ }}\)x-2
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
b) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
c) Để \(P< -\dfrac{1}{2}\) thì \(P+\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
\(\Leftrightarrow x< 9\)
Kết hợp ĐKXĐ, ta được: \(0\le x< 9\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne2\\x\ne4\\x\ge0\end{matrix}\right.\)
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\\rightarrow \left\{{}\begin{matrix}x>\sqrt{2}\\x>-\sqrt{2}\\x>0\end{matrix}\right.\\ \rightarrow x>\sqrt{2}\)
Vậy \(x>\sqrt{2}\)
b)
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\\ =\left[\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{2\sqrt{x}}=\dfrac{x}{\sqrt{x}}=\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}}=\sqrt{x}\)
Vậy \(M=\sqrt{x}\)
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}x>4\\x>-4\\x>0\end{matrix}\right.\\ \rightarrow x>4\)
Vậy \(x>4\)
TXĐ \(\sqrt{x}\)lớn hơn hoặc bằng 0=>x lớn hơn hoặc bằng 0
A=\(\sqrt{x}\)-\(\sqrt{x^2-4x+4}\)=\(\sqrt{x}\)-\(\sqrt{\left(x-2\right)^2}\)=\(\sqrt{x}\)-x+2
A=-(x-\(\sqrt{x}\)-2)=-(\(\sqrt{x}\)-2)(\(\sqrt[]{x}\)+1)
\(Đk:x\ge0\)
b) \(\sqrt{x}-\sqrt{x^2-4x+4}\)
\(=\sqrt{x}-\sqrt{\left(x-2\right)^2}\)
\(=\sqrt{x}-\left|x-2\right|\left(1\right)\)
Th1 : \(x-2\ge0\)
PT ( 1 ) \(=\sqrt{x}-x+2\)
Th2 : \(x-2< 0\)
PT ( 1 ) \(=\sqrt{x}-2+x\)
\(a)C=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\dfrac{x-4}{\sqrt{4x}}\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right)\dfrac{x-4}{2\sqrt{x}}\\ =\left(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\right)\dfrac{x-4}{2\sqrt{x}}\\ =\dfrac{2x}{x-4}\cdot\dfrac{x-4}{2\sqrt{x}}\\ =\dfrac{2x\left(x-4\right)}{2\sqrt{x}\left(x-4\right)}\\ =\sqrt{x}\)
b) C>3
\(\Rightarrow\sqrt{x}>3\\ \Leftrightarrow x>9\)
`đk:x-\sqrt{x^2-4x+4}>=0`
`<=>x>=\sqrt{x^2-4x+4}`
`<=>x^2>=x^2-4x+4(x>=0)`
`<=>4x-4>=0`
`<=>4x>=4<=>x>=1`
`b)A=sqrt{x-sqrt{(x-2)^2}}`
`=sqrt{x-|x-2|}`
`x>=2=>|x-2|=x-2`
`=>A=sqrt{x-x+2}=sqrt2`
`1<=x<=2=>|x-2|=2x-`
`=>A=\sqrt{x+x-2}=sqrt{2x-2}`