\(\sqrt{x-\sqrt{x^2-4x+4}}\) 

a) Tìm ĐKXĐ của biểu thức 

b)Rú...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

31 tháng 1 2020

a) \(ĐKXĐ:x\ge0;x\ne3\)

b) \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)

\(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\left(2\sqrt{x}+2\sqrt{3}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}\right).2\left(\sqrt{x}+\sqrt{3}\right)\)

\(\Leftrightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)\)

\(\Leftrightarrow A=2\sqrt{x}-2\sqrt{3}\)

c) Thay \(x=4-2\sqrt{3}\)vào A, ta có :

\(A=2\sqrt{4-2\sqrt{3}}-2\sqrt{3}\)

\(\Leftrightarrow A=2\sqrt{\left(1-\sqrt{3}\right)^2}-2\sqrt{3}\)

\(\Leftrightarrow A=2\left(\sqrt{3}-1\right)-2\sqrt{3}\)

\(\Leftrightarrow A=2\sqrt{3}-2-2\sqrt{3}\)

\(\Leftrightarrow A=-2\)

17 tháng 8 2016

A) ĐKXĐ : \(x\ge0\) và \(x\ne4\)

Rút gọn :\(A=\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{4\sqrt{x}}{4-x}\)

            \(A=\frac{2\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{2+\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

            \(A=\frac{4-2\sqrt{x}+2+\sqrt{x}+4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

            \(A=\frac{6+3\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

           \(A=\frac{3\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

           \(A=\frac{3}{2-\sqrt{x}}\)

b) thay \(x=7+4\sqrt{3}\) vào A 

ta được :\(A=\frac{3}{2-\sqrt{7+4\sqrt{3}}}=\frac{3}{2-2+\sqrt{3}}=\frac{3}{\sqrt{3}}\)

vậy vói \(x=7+4\sqrt{3}\) thì \(A=\frac{3}{\sqrt{3}}\)

c)với\(x\ge0\) và \(x\ne4\)

Để \(A=-\frac{3}{7}\Leftrightarrow\frac{3}{2-\sqrt{x}}=-\frac{3}{7}\)

                        \(\Leftrightarrow3.7=-3\left(2-\sqrt{x}\right)\)

                         \(\Leftrightarrow21=-6+3\sqrt{x}\)

                          \(\Leftrightarrow21+6=3\sqrt{x}\)

                           \(\Leftrightarrow27=3\sqrt{x}\)

                            \(\Leftrightarrow\sqrt{x}=9\)

                           \(\Leftrightarrow x=81\)

Vậy để\(A=-\frac{3}{7}\Leftrightarrow x=81\)