K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

ĐKXĐ \(x\ne0;x\ne1;x\ne-1\)

\(A=\frac{\left(x+1+1-x\right)}{\left(1-x^2\right)-\frac{5-x}{1-x^2}}:\frac{\left(1-2x\right)}{x^2-1}\)

\(A=\frac{\left(x-3\right)}{\left(1-x^2\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)

\(A=\frac{\left(3-x\right)}{\left(x^2-1\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)

\(A=\frac{\left(3x-2\right)}{1-2x}\)

27 tháng 2 2020

\(a,ĐKXĐ:x\ne\pm1;x\ne\frac{1}{2}\)

\(A=\left(\frac{1}{x-1}+\frac{2}{x+1}-\frac{5-x}{1-x^{^2}}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{1}{x-1}+\frac{2}{x+1}+\frac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}:\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+4}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\frac{2x+4}{1-2x}\)

\(b,Vớix\ne\pm1;x\ne\frac{1}{2}\)ta có \(A=\frac{2x+4}{1-2x}=\frac{-1\left(1-2x\right)+5}{1-2x}=-1+\frac{5}{1-2x}\)

Với x thuộc Z để A nguyên thì \(5⋮1-2x\Rightarrow1-2x\inƯ\left\{5\right\}=\left\{\pm1;\pm5\right\}\)

Với 1-2x=1 => x= 0(TMĐKXĐ)

với 1-2x=-1 => x=1(loại)

với 1-2x=5 => x=-2(tmđkxđ)

với 1-2x=-5 => x=3(tmđkxđ)

Vậy với \(x\in\left\{0;-2;-3\right\}\)thì A nguyên

11 tháng 3 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{\left(1+x\right)}{\left(1+x\right)\left(1-x\right)}+\frac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\frac{1+x+2-2x-5+x}{1-x^2}:\frac{2x-1}{1-x^2}\)

\(=\frac{8}{1-x^2}.\frac{1-x^2}{2x-1}=\frac{8}{2x-1}\)

b) Để A nguyên thì \(\frac{8}{2x-1}\inℤ\)

\(\Leftrightarrow8⋮2x-1\Rightarrow2x-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà dễ thấy 2x - 1 lẻ nên\(2x-1\in\left\{\pm1\right\}\)

+) \(2x-1=1\Rightarrow x=1\left(ktmđkxđ\right)\)

+) \(2x-1=-1\Rightarrow x=0\left(tmđkxđ\right)\)

Vậy x nguyên bằng 0 thì A nguyên

c) \(\left|A\right|=A\Leftrightarrow A\ge0\)

\(\Rightarrow\frac{8}{2x-1}\ge0\Rightarrow2x-1>0\Leftrightarrow x>\frac{1}{2}\)

Vậy \(x>\frac{1}{2}\)thì |A| = A

11 tháng 3 2020

a, \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

\(\Leftrightarrow A=\left(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2-2x}{\left(1-x\right)\left(1+x\right)}-\frac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\frac{\left(x+1\right)\left(x-1\right)}{2x-1}\)

\(\Leftrightarrow A=\frac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2x-1}\)

\(\Leftrightarrow A=\frac{-2\left(1-x^2\right)}{\left(1-x^2\right)\left(2x-1\right)}=\frac{2}{2x-1}\)

Vậy \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

b) \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

Để A nhận giá trị nguyên thì 2 chia hết cho 2x-1

Mà x nguyên => 2x-1 nguyên

=> 2x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng

2x-1-2-112
2x-1023
x-1/2013/2

Đối chiếu điều kiện

=> x=0

28 tháng 11 2018

ĐKXĐ : \(x\ne\pm3\)

a) \(A=\left(\frac{2x}{x-3}-\frac{x+1}{x+3}+\frac{x^2+1}{9-x^2}\right):\left(1-\frac{x-1}{x+3}\right)\)

\(A=\left(\frac{-2x\left(3+x\right)}{\left(3-x\right)\left(3+x\right)}-\frac{\left(x+1\right)\left(3-x\right)}{\left(x+3\right)\left(3-x\right)}+\frac{x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3}{x+3}-\frac{x-1}{x+3}\right)\)

\(A=\left(\frac{-2x^2-6x+x^2-2x-3+x^2+1}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{x+3-x+1}{x+3}\right)\)

\(A=\left(\frac{-8x-2}{\left(3-x\right)\left(3+x\right)}\right):\left(\frac{4}{x+3}\right)\)

\(A=\frac{-2\left(4x+1\right)\left(x+3\right)}{\left(3-x\right)\left(3+x\right)4}\)

\(A=\frac{-\left(4x+1\right)}{2\left(3-x\right)}\)

\(A=\frac{4x+1}{2\left(x-3\right)}\)

b) \(\left|x-5\right|=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}}\)

Mà ĐKXĐ x khác 3 => ta xét x = 7

\(A=\frac{4\cdot7+1}{2\cdot\left(7-3\right)}=\frac{29}{8}\)

c) Để A nguyên thì 4x + 1 ⋮ 2x - 3

<=> 4x - 6 + 7 ⋮ 2x - 3

<=> 2 ( 2x - 3 ) + 7 ⋮ 2x - 3

Mà 2 ( 2x - 3 ) ⋮ ( 2x - 3 ) => 7 ⋮ 2x - 3

=> 2x - 3 thuộc Ư(7) = { 1; -1; 7; -7 }

=> x thuộc { 2; 1; 5; -2 }

Vậy .....

28 tháng 11 2018

a)   ĐKXĐ: \(x\ne\pm3\)

   \(A=\frac{2x\left(x+3\right)-\left(x+1\right)\left(x-3\right)-\left(x^2+1\right)}{x^2-9} : \frac{x+3-\left(x-1\right)}{x+3}\)

 \(A=\frac{2x^2-6x-x^2+2x+3-x^2-1}{x^2-9} : \frac{4}{x+3}\)

\(A=\frac{-4x+2}{x^2+9} : \frac{4}{x+3}\)

\(A=\frac{2\left(1-2x\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{4}=\frac{1-2x}{2x-6}\)

b)

  Có 2 trường hợp:

T.Hợp 1:

               \(x-5=2\Leftrightarrow x=7\)(thỏa mã ĐKXĐ)

thay vào A ta được: A=\(-\frac{13}{8}\)

T.Hợp 2:

          \(x-5=-2\Leftrightarrow x=3\)(Không thỏa mãn ĐKXĐ)

Vậy không tồn tại giá trị của A tại x=3

Vậy với x=7 thì A=-13/8

c)

      \(\frac{1-2x}{2x-6}=\frac{1-\left(2x-6\right)-6}{2x-6}=-1-\frac{5}{2x-6}\)

Do -1 nguyên, để A nguyên thì \(-\frac{5}{2x-6}\inℤ\)

Để \(-\frac{5}{2x-6}\inℤ\)thì \(2x-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Do 2x-6 chẵn, để x nguyên thì 2x-6 là 1 số chẵn .

Vậy không có giá trị nguyên nào của x để A nguyên

  

15 tháng 12 2017

a, ĐKXĐ : x khác -1 và 1

b, A = 2x^2+4x+2/(x-1).(x+1)  .  (x-1)/10

  = 2.(x^2+2x+1)/10.(x+1)

  = (x+1)^2/5.(x+1)

  = x+1/5

k mk nha

a, ĐKXĐ: \(x\ne\pm1\)

b, \(A=\left(\frac{2x}{x-1}+\frac{4x}{x^2-1}-\frac{2}{x+1}\right)\frac{x-1}{10}\)

\(A=\left(\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right)\frac{x-1}{10}\)

\(A=\frac{2x^2+2x+4x-2x+2}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{10}\)

\(A=\frac{2x^2+4x+2}{10\left(x+1\right)}\)

\(A=\frac{2\left(x+1\right)^2}{10\left(x+1\right)}\)

\(A=\frac{\left(x+1\right)}{5}\)

9 tháng 5 2021

a) ĐKXĐ : x \(\ne-2;x\ne1;x\ne0\)

\(A=\left(\frac{x}{x+2}-\frac{4}{x^2+2x}\right):\left(\frac{x^2-2x+1}{x^2-x}\right)=\left(\frac{x}{x+2}-\frac{4}{x\left(x+2\right)}\right):\left(\frac{\left(x-1\right)^2}{x\left(x-1\right)}\right)\)

\(=\frac{x^2-4}{x\left(x+2\right)}:\frac{x-1}{x}=\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}.\frac{x}{x-1}=\frac{x-2}{x}.\frac{x}{x-1}=\frac{x-2}{x-1}\)

b) Để A > 1 

=> \(\frac{x-2}{x-1}>1\)

=> \(\frac{x-2}{x-1}-1>0\Rightarrow\frac{-1}{x-1}>0\Rightarrow x-1< 0\Rightarrow x< 1\)

Vậy để A > 1 thì x < 1 và x \(\ne-2;x\ne1;x\ne0\)

c) Ta có \(A=\frac{x-2}{x-1}=\frac{x-1-1}{x-1}=1-\frac{1}{x-1}\)

Để A \(\inℤ\Rightarrow\frac{1}{x-1}\inℤ\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)\Rightarrow x-1\in\left\{1;-1\right\}\)

Khi x - 1 = 1 => x = 2( tm)

Khi x - 1 =-1 => x = 0 (loại) 

Vậy x = 2 thì A nguyên

7 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{4x^2}{1-x^2}\right):\frac{2x^2-2}{x^2-2x+1}\)

\(\Leftrightarrow A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{4x^2}{x^2-1}\right):\frac{2\left(x^2-1\right)}{\left(x-1\right)^2}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{4x-4x^2}{x^2-1}.\frac{\left(x-1\right)^2}{2\left(x^2-1\right)}\)

\(\Leftrightarrow A=\frac{-4x\left(x-1\right)^3}{2\left(x-1\right)^2\left(x+1\right)^2}\)

\(\Leftrightarrow A=\frac{-2x\left(x-1\right)}{\left(x+1\right)^2}\)

b) Thay x = -3 vào A, ta được :

\(A=\frac{\left(-2\right)\left(-3\right)\left(-3-1\right)}{\left(-3+1\right)^2}\)

\(\Leftrightarrow A=\frac{6.\left(-4\right)}{2^2}\)

\(\Leftrightarrow A=-6\)

c) Để A > -1

\(\Leftrightarrow-2x\left(x-1\right)>-\left(x+1\right)^2\)

\(\Leftrightarrow2x\left(x-1\right)< \left(x+1\right)^2\)

\(\Leftrightarrow2x^2-2x< x^2+2x+1\)

\(\Leftrightarrow x^2-4x-1< 0\)

\(\Leftrightarrow\left(x-2\right)^2-5< 0\)

\(\Leftrightarrow\left(x-2\right)^2< 5\)

Đoạn này bạn tự tìm giá trị x thỏa mãn là xong (Chú ý ĐKXĐ)

28 tháng 5 2015

a,C=(1/(1-x)+2/(x+1)-(5-x)/(1-x2)):(1-2x)/(x2-1)  ĐKXĐ:x khác -1 và 1

  =((x+1+1-x)/(1-x2)-(5-x)/(1-x2):(1-2x)/(x2-1)

  =(x-3)/(1-x2):(1-2x)/(x2-1)

  =(3-x)(x2-1):(1-2x)/(x2-1)

  =(3-x)/(1-2x)

b, Giá trị của B nguyên khi x=-2;0;1;3

20 tháng 3 2017

sai rồi~

15 tháng 3 2021

a,\(P=\frac{x^2+x}{x^2-2x+1}\div\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)

\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x^2-1}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x^2+x}{\left(x-1\right)^2}\div\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(=\frac{x^2+x}{\left(x-1\right)^2}\div\frac{x+1}{x\left(x-1\right)}=\frac{x^2+x}{\left(x-1\right)^2}\times\frac{x\left(x-1\right)}{x+1}\)

\(=\frac{x^2\left(x+1\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2}{x-1}\)

b,a,Để \(P\le1\Rightarrow\frac{x^2}{x-1}\le1\)

\(\Leftrightarrow\frac{x^2}{x-1}-1\le0\)

\(\Leftrightarrow\frac{x^2-x+1}{x-1}\le0\)

\(\Leftrightarrow x-1\le0\)

\(\Leftrightarrow x\le1\)

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2