\(\left(1+\dfrac{x^2}{x^2+1}\right):\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3+x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{x^2+1+1}{x^2+1}:\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{x^2+2}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x^2+1\right)}{\left(x-1\right)^2}=\dfrac{x^2+2}{x-1}\)

b: A nguyên

=>x^2-1+3 chia hết cho x-1

=>\(x-1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;0;4;-2\right\}\)

a:\(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\left(\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}=\dfrac{x+1}{x-1}\)

b: Khi x=1/2 thì \(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-1\right)=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)

4 tháng 7 2017

B3;a,ĐKXĐ:\(x\ne\pm4\)

A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)

26 tháng 11 2022

a: ĐKXĐ: \(x\in\left\{-5;3;-3\right\}\)

\(A=\dfrac{-3\left(x+5\right)}{\left(x+5\right)^2}:\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-3}{x+5}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-3\left(x+3\right)}\)

\(=\dfrac{x-3}{x+5}\)

b: Để A<1 thì A-1<0

=>\(\dfrac{x-3-x-5}{x+5}< 0\)

=>x+5>0

=>x>-5

c: Để A=(2x-3)/(x+1) thì \(\dfrac{2x-3}{x+1}=\dfrac{x-3}{x+5}\)

=>2x^2+10x-3x-15=x^2-2x-3

=>2x^2+7x-15-x^2+2x+3=0

=>x^2+9x-12=0

hay \(x=\dfrac{-9\pm\sqrt{129}}{2}\)

Bài 1: 

a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)

Để A=0 thì x+1=0

hay x=-1

b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)

Để B=0 thi (x-2)(x+2)=0

=>x=2 hoặc x=-2

10 tháng 4 2017

a)P=x2-x+1 đkxđ:x\(\ne\)0;1

b)P=x2-x+1=(x-\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)\(\ge\)\(\dfrac{3}{4}\) xảy ra dấu = khi x=\(\dfrac{-1}{2}\)

c)Q=\(\dfrac{2x}{P}\)=\(\dfrac{2}{x-1+\dfrac{1}{x}}\)\(\in\)Z đkxđ:x\(\ne\)0

\(\Rightarrow\)2\(⋮\)x-1+\(\dfrac{1}{x}\)\(\Rightarrow\)x-1+\(\dfrac{1}{x}\)\(\in\)U(2)={-2;-1;1;2}

giải ra x\(\in\){-\(\sqrt{\dfrac{5}{4}}\)+\(\dfrac{3}{2}\);\(\sqrt{\dfrac{5}{4}}\)+\(\dfrac{3}{2}\)}

1: Ta có: \(A=\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)

\(=\left(x+4-1\right):\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+3\right):\dfrac{x^2+x-2x-2+x^2-9-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\)

\(=\left(x+3\right):\dfrac{x^2-9}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-3\right)\left(x+1\right)}{x^2-9}\)

\(=x+1\)

ĐKXĐ: \(x\notin\left\{4;3;-1\right\}\)

2: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì \(x+1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1-1⋮x^2+x+1\)

mà \(x^2+x+1⋮x^2+x+1\)

nên \(-1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1\inƯ\left(-1\right)\)

\(\Leftrightarrow x^2+x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x^2+x\in\left\{0;-2\right\}\)

\(\Leftrightarrow x^2+x=0\)(Vì \(x^2+x>-2\forall x\))

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Vậy: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì x=0

a: \(C=\left(\dfrac{2x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\dfrac{x^2+x+1-x^2+2}{x^2+x+1}\)

\(=\dfrac{2x^2+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+3}\)

\(=\dfrac{x^2-x}{\left(x-1\right)}\cdot\dfrac{1}{x+3}=\dfrac{x}{x+3}\)

b: Để C là số nguyên dương thì \(\left\{{}\begin{matrix}x⋮x+3\\\dfrac{x}{x+3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3\in\left\{1;-1;3;-3\right\}\\x\in\left(-\infty;-3\right)\cup\left(0;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{-4;-6\right\}\)

28 tháng 3 2018

a) \(ĐKXĐ:x\ne\pm3;x\ne-6\)

Với \(x\ne\pm3;x\ne-6\), ta có:

\(P=\left(\dfrac{x}{x-3}-\dfrac{2}{x+3}+\dfrac{x^2}{9-x^2}\right):\dfrac{x+6}{3x+9}\\ =\left(\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2}{\left(x+3\right)\left(x-3\right)}\right)\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x^2+3x-2x+6-x^2}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{3}{x-3}\)

Vậy \(P=\dfrac{3}{x-3}\) với \(x\ne\pm3;x\ne-6\)

b) Ta có: \(2x-\left|4-x\right|=5\)

+) Nếu \(x\le4\Leftrightarrow2x-\left(4-x\right)=5\)

\(\Leftrightarrow2x-4+x=5\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\left(Tm\right)\)

+) Nếu \(x>4\Leftrightarrow2x-\left(x-4\right)=5\)

\(\Leftrightarrow2x-x+4=5\\ \Leftrightarrow x=1\left(Ktm\right)\)

Với \(x\ne\pm3;x\ne-6\)

Khi \(x=3\left(Ktm\right)\rightarrow\text{loại}\)

Vậy khi \(2x-\left|4-x\right|=5\) không có giá trị.

28 tháng 3 2018

c) Với \(x\ne\pm3;x\ne-6\)

Để P nhận giá trị nguyên

thì \(\Rightarrow\dfrac{3}{x-3}\in Z\)

\(\Rightarrow3⋮x-3\\ \Rightarrow x-3\inƯ_{\left(3\right)}\)

\(Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)

Lập bảng giá trị:

\(x-3\) \(-3\) \(-1\) \(1\) \(3\)
\(x\) \(0\left(TM\right)\) \(2\left(TM\right)\) \(4\left(TM\right)\) \(6\left(KTM\right)\)

Vậy để P nhận giá trị nguyên

thì \(x\in\left\{0;2;4\right\}\)

d) Với \(x\ne\pm3;x\ne-6\)

Ta có : \(P^2-P+1=\dfrac{9}{\left(x-3\right)^2}-\dfrac{3}{x-3}+1\)

Đặt \(\dfrac{3}{x-3}=y\)

\(\Rightarrow P^2-P+1=y^2-y+1\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Do \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow P^2-P+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

Dấu "=" xảy ra khi:

\(\left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow x-3=6\\ \Leftrightarrow x=9\left(TM\right)\)

Vậy \(GTNN\) của biểu thức là \(\dfrac{3}{4}\) khi \(x=9\)