\(\left(\dfrac{x}{x-3}-\dfrac{2}{x+3}+\dfrac{x^2}{9-x^2}\right):\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

a) \(ĐKXĐ:x\ne\pm3;x\ne-6\)

Với \(x\ne\pm3;x\ne-6\), ta có:

\(P=\left(\dfrac{x}{x-3}-\dfrac{2}{x+3}+\dfrac{x^2}{9-x^2}\right):\dfrac{x+6}{3x+9}\\ =\left(\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2}{\left(x+3\right)\left(x-3\right)}\right)\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x^2+3x-2x+6-x^2}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{3}{x-3}\)

Vậy \(P=\dfrac{3}{x-3}\) với \(x\ne\pm3;x\ne-6\)

b) Ta có: \(2x-\left|4-x\right|=5\)

+) Nếu \(x\le4\Leftrightarrow2x-\left(4-x\right)=5\)

\(\Leftrightarrow2x-4+x=5\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\left(Tm\right)\)

+) Nếu \(x>4\Leftrightarrow2x-\left(x-4\right)=5\)

\(\Leftrightarrow2x-x+4=5\\ \Leftrightarrow x=1\left(Ktm\right)\)

Với \(x\ne\pm3;x\ne-6\)

Khi \(x=3\left(Ktm\right)\rightarrow\text{loại}\)

Vậy khi \(2x-\left|4-x\right|=5\) không có giá trị.

28 tháng 3 2018

c) Với \(x\ne\pm3;x\ne-6\)

Để P nhận giá trị nguyên

thì \(\Rightarrow\dfrac{3}{x-3}\in Z\)

\(\Rightarrow3⋮x-3\\ \Rightarrow x-3\inƯ_{\left(3\right)}\)

\(Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)

Lập bảng giá trị:

\(x-3\) \(-3\) \(-1\) \(1\) \(3\)
\(x\) \(0\left(TM\right)\) \(2\left(TM\right)\) \(4\left(TM\right)\) \(6\left(KTM\right)\)

Vậy để P nhận giá trị nguyên

thì \(x\in\left\{0;2;4\right\}\)

d) Với \(x\ne\pm3;x\ne-6\)

Ta có : \(P^2-P+1=\dfrac{9}{\left(x-3\right)^2}-\dfrac{3}{x-3}+1\)

Đặt \(\dfrac{3}{x-3}=y\)

\(\Rightarrow P^2-P+1=y^2-y+1\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Do \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow P^2-P+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

Dấu "=" xảy ra khi:

\(\left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow x-3=6\\ \Leftrightarrow x=9\left(TM\right)\)

Vậy \(GTNN\) của biểu thức là \(\dfrac{3}{4}\) khi \(x=9\)

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2018

Lời giải:

ĐKXĐ: \(x\neq \left\{2;\pm 3\right\}\)

a) Ta có:

\(P=\left(\frac{x^2-3x}{x^2-9}-1\right):\left(\frac{9-x^2}{x^2+x-6}-\frac{x-3}{2-x}-\frac{x-2}{x+3}\right)\)

\(P=\left(\frac{x(x-3)}{(x-3)(x+3)}-1\right):\left(\frac{(3-x)(3+x)}{(x-2)(x+3)}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)

\(P=\left(\frac{x}{x+3}-1\right):\left(\frac{3-x}{x-2}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)

\(P=\frac{x-(x+3)}{x+3}:\left(-\frac{x-2}{x+3}\right)=\frac{-3}{x+3}.\frac{x+3}{-(x-2)}=\frac{3}{x-2}\)

b) \(x^3-3x+2=0\)

\(\Leftrightarrow (x^3-x)-2(x-1)=0\)

\(\Leftrightarrow x(x-1)(x+1)-2(x-1)=0\)

\(\Leftrightarrow (x-1)(x^2+x-2)=0\)

\(\Leftrightarrow (x-1)[(x^2-1)+(x-1)]=0\)

\(\Leftrightarrow (x-1)^2(x+2)=0\) \(\Leftrightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)

Với \(x=1\Rightarrow P=\frac{3}{1-2}=-3\)

Với \(x=-2\Rightarrow P=\frac{3}{-2-2}=\frac{-3}{4}\)

c)

\(P=\frac{3}{x-2}\in\mathbb{Z}\Leftrightarrow 3\vdots x-2\)

\(\Leftrightarrow x-2\in \text{Ư}(3)\Rightarrow x-2\in\left\{\pm 1; \pm 3\right\}\)

\(\Leftrightarrow x\in \left\{3,1,5,-1\right\}\)

Do \(x\neq 3\Rightarrow x\in \left\{-1,1,5\right\}\)

4 tháng 7 2017

B3;a,ĐKXĐ:\(x\ne\pm4\)

A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)

12 tháng 8 2018

a) Rút gọn :

P = \(\left(\dfrac{2x}{x+3}+\dfrac{10}{x-3}-\dfrac{2x^2+14}{x^2-9}\right):\dfrac{4}{x+3}\)

\(ĐKXĐ:\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

Ta có : \(P=\left[\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{10\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2x^2+14}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{x+3}{4}\)

\(P=\dfrac{2x^2-6x+10x+30-2x^2-14}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4}\)

\(P=\dfrac{4x+16}{4x-13}=\dfrac{x+4}{x-3}\)

b) |x| = 3 => \(\left\{{}\begin{matrix}\left|x\right|=3khix\ge0\\\left|x\right|=-3khix< 0\end{matrix}\right.\)

* TH1 : x \(\ge0\)

\(P=\dfrac{x+4}{x-3}=\dfrac{3+4}{3-3}\left(koTMvìmẫu\ne0\right)\)

* TH2 : x < 0

\(P=\dfrac{x+4}{x-3}=\dfrac{-3+4}{-3-3}=\dfrac{-1}{6}\left(Tm\right)\)

c) Để P = \(\dfrac{-1}{2}\) thì :

\(\dfrac{x+4}{x-3}=\dfrac{-1}{2}\)

\(\Leftrightarrow2x+8=3-x\)

\(\Leftrightarrow2x+x=-8+3\)

\(\Leftrightarrow3x=-5\Rightarrow x=\dfrac{-5}{3}\)

d) P \(\le\) 2

<=> \(\dfrac{x+4}{x-3}\le2\)

\(\Leftrightarrow\dfrac{x+4}{x-3}-\dfrac{2x-6}{x-3}\le0\)

\(\Leftrightarrow\dfrac{10-x}{x-3}\le0\)

Lập bang xét dấu và tìm x nhé!!

24 tháng 4 2017

Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 14 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

26 tháng 11 2022

a: ĐKXĐ: \(x\in\left\{-5;3;-3\right\}\)

\(A=\dfrac{-3\left(x+5\right)}{\left(x+5\right)^2}:\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-3}{x+5}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-3\left(x+3\right)}\)

\(=\dfrac{x-3}{x+5}\)

b: Để A<1 thì A-1<0

=>\(\dfrac{x-3-x-5}{x+5}< 0\)

=>x+5>0

=>x>-5

c: Để A=(2x-3)/(x+1) thì \(\dfrac{2x-3}{x+1}=\dfrac{x-3}{x+5}\)

=>2x^2+10x-3x-15=x^2-2x-3

=>2x^2+7x-15-x^2+2x+3=0

=>x^2+9x-12=0

hay \(x=\dfrac{-9\pm\sqrt{129}}{2}\)

a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |x|=1/3 thì x=1/3 hoặc x=-1/3

Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)

Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)

c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)

=>\(x-1\in\left\{1;-1\right\}\)

=>x=2

d: Để Q=4 thì x^2=4x-4

=>x=2

3 tháng 1 2019

\(ĐKXĐ:x\ne-3;2\)

\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{1}{x-2}\)

\(=\frac{x^2+4x+4}{\left(x+3\right)\left(x+2\right)}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{x+3}{\left(x+2\right)\left(x+3\right)}\)

\(=\frac{x^2+4x+4-5-x-3}{\left(x+2\right)\left(x+3\right)}=\frac{x^2+3x-4}{\left(x+3\right)\left(x+2\right)}=\frac{\left(x+4\right)\left(x-1\right)}{\left(x+3\right)\left(x+2\right)}\)

\(x^2-9=0\Leftrightarrow x=3\left(vì:x\ne-3\right)\)

\(\Rightarrow P=\frac{7}{15}\)

\(P\inℤ\Leftrightarrow x^2+3x-4⋮x^2+5x+6\Leftrightarrow2x+10⋮x^2+5x+6\Leftrightarrow12⋮x^2+5xx+6\)

\(................\left(dễ\right)\)

3 tháng 1 2019

P/s: shitbo sai rồi nha bạn!Nếu không tin thì thay x = 3 vào P ban đầu và giá trị P sau khi rút gọn sẽ thấy sự khác biệt =)

ĐK: \(x\ne-3;x\ne2\)

a) \(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}\)

\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

Thay vào điều kiện,tìm loại x = -3 .Tìm được x =3

Ta có: \(P=\frac{x-4}{x-2}=\frac{3-4}{3-2}=-1\)

c)Ta có: \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)

Để P có giá trị nguyên thì \(\frac{2}{x-2}\) nguyên hay \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Suy ra \(x=\left\{0;1;3;4\right\}\)