Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+9\right)}\right).\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\sqrt{x}-2}=\frac{-3\sqrt{x}-3}{2x-8\sqrt{x}+6}\)
Nếu đề ko sai thì đấy là kết quả
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm8\end{cases}}\)
\(A=\frac{8-x}{2+\sqrt[3]{x}}:\left(2+\frac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\frac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\cdot\frac{\sqrt[3]{x^2}-4}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\)
\(\Leftrightarrow A=\frac{8-x}{2+\sqrt[3]{x}}:\frac{2\sqrt[3]{x}+\sqrt[3]{x^2}+4}{2+\sqrt[3]{x}}+\frac{\sqrt[3]{x^2}}{\sqrt[3]{x}-2}\cdot\frac{\left(\sqrt[3]{x}-2\right)\left(\sqrt[3]{x}+2\right)}{\sqrt[3]{x}\left(\sqrt[3]{x}+2\right)}\)
\(\Leftrightarrow A=\frac{8-x}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}+\sqrt[3]{x}\)
\(\Leftrightarrow A=2-\sqrt[3]{x}+\sqrt[3]{x}\)
\(\Leftrightarrow A=2\)
Vậy A không phụ thuộc vào biến số (ĐPCM)