K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1

Đề bài là gì bạn?

 

2 tháng 1

   A = 1 + 21 + 22 + 23 + ... + 22023

2.A = 2 + 22 + 23 + 24 + ... + 22024

2A - A = 2 + 22 + 23 + 22023 - (1 + 2 + 22 + 23 + 24 + ... + 22023)

A        =   2 + 22 + 23 + 22023 + 22024- 1 - 2 - 22 - 23 - 24 - ... - 22023

A        =    (2 - 2) + (22 - 22) + (23 - 23) + (24 - 24) + ...+(22024 - 1)

A        =      0   + 0  +  0 + 0 + .... + 22024 - 1

A        = 22024 - 1

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$

$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$

$\Rightarrow 5a-a=5^{2024}-1$

$\Rightarrow 4a=5^{2024}-1$

$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)

5 tháng 6 2023

\(A=\dfrac{2}{3}+\dfrac{2}{3^2}+\dfrac{2}{3^3}+....+\dfrac{2}{3^{2023}}\)

\(3A=2+\dfrac{2}{3}+\dfrac{2}{3^2}+....+\dfrac{2}{3^{2022}}\)

\(3A-A=\left(2+\dfrac{2}{3}+\dfrac{2}{3^2}+...+\dfrac{2}{3^{2022}}\right)-\left(\dfrac{2}{3}+\dfrac{2}{3^2}+....+\dfrac{2}{3^{2023}}\right)\)

\(2A=2-\dfrac{2}{3^{2023}}\)

\(A=\left(2-\dfrac{2}{3^{2023}}\right)\times\dfrac{1}{2}\)

\(A=2\times\dfrac{1}{2}-\dfrac{2}{3^{2023}}\times\dfrac{1}{2}\)

\(A=1-\dfrac{1}{3^{2023}}\)

=> \(A< 1\left(đpcm\right)\)

23 tháng 12 2023

 

1 tháng 8 2023

\(A=1+2+2^2+...+2^{2020}+2^{2021}+2^{2023}\)

\(A=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2020}\left(1+2+2^2\right)-2^{2022}+2^{2023}\)

\(A=1+2.7+2^4.7+...+2^{2020}.7-2^{2022}+2^{2023}\)

\(A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\left(1\right)\)

Ta có :

\(2^3=8\equiv1\) (mod 7)

\(\Rightarrow\left(2^3\right)^{674}\equiv1^{674}=1\) (mod 7)

\(\Rightarrow2^{2022}\equiv1\) (mod 7)

\(\Rightarrow2^{2022}+1\equiv1+1=2\)  (mod 7)

\(\Rightarrow2^{2022}+1\equiv2\) (mod 7)

mà \(7\left(2+2^4+...+2^{2020}\right)⋮7\)

\(\left(1\right)\Rightarrow A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\equiv2\) (mod 7)

Vậy số dư của A khi chia cho 7 là 2

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2023}}$

$2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2022}}$

$2A-A=2-\frac{1}{2^{2023}}$

$A=2-\frac{1}{2^{2023}}$

23 tháng 10

Nhầm đề hả bạn 

7 tháng 1 2023

\(4A-3^{2023}\) hay \(4A=3^{2023}\) hả bạn

7 tháng 1 2023

\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)

\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)

\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)

\(2A=3^{2023}-1\)

\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)

\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.