Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer :
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\)
\(\Rightarrow A+1=2+2+2^2+...+2^{2021}\)
\(\Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\)
....
\(\Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)
A=1+21+22 +...+22021
2A = 2( 1+21+22 +...+22021 )
2A = 2 + 22 + 23 + ... + 22022
2A - A = ( 2 + 22 + 23 + ... + 22022 ) - ( 1+21+22 +...+22021 )
A = 22022 - 1
2x = A + 1
=> 2x = 22022 - 1 + 1
=> 2x = 22022
=> x = 2022
Vậy x = 2022
2A=2+2^2+...+2^2022
=>A=2^2022-1
2^x=A+1
=>2^x=2^2022
=>x=2022
1) A=62020+62021+62022+62023
A= ( 62020+62021) + ( 62022+62023)
A= 62020.( 1+6) + 62022.( 1+6)
A= 62020.7+62022.7
A= 7.( 62020+62022)
Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.
Vậy A chia hết cho 7
_HT_
2) 1+2+3+...+n=1275
Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị
=> Dãy số trên có n số hạng
Tổng của dãy số trên là : (n+1).n:2 = 1275
(n+1).n= 1275.2=2550
Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50
=> n=50 ( vì n< n+1)
Vậy n=50
_HT_
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
a) \(\left(3x-2\right)\left(2y-3\right)=1\)
TH1: \(\hept{\begin{cases}3x-2=1\\2y-3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
TH2: \(\hept{\begin{cases}3x-2=-1\\2y-3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}\)
\(a,\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow3x-2=1\)
\(3x=1+2\)
\(3x=3\)
\(x=3:3\)
\(x=1\)
\(2y-3=1\)
\(2y=1+3\)
\(2y=4\)
\(y=4:2\)
\(y=2\)
\(\Leftrightarrow2A=2+2^2+2^3+...+2^{2022}\\ \Leftrightarrow2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}\\ \Leftrightarrow A=2^{2022}-1\\ \Leftrightarrow A+1=2^{2022}\)
Mà \(A+1=2^x\Leftrightarrow x=2022\)
cảm ơn nha